Shim, H., Monticone, F. & Miller, O. D. Fundamental limits to the refractive index of transparent optical materials. Adv. Mater. 33, 2103946 (2021).
Khurgin, J. B. Expanding the photonic palette: exploring high index materials. ACS Photon. 9, 743–751 (2022).
Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).
Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010).
Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012).
Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).
Khurgin, J. B. Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss. 178, 109–122 (2015).
Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015).
Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).
Weiss, R., Barish, B. C. & Thorne K. S. Press release: The Nobel Prize in Physics 2017. The Nobel Prize https://www.nobelprize.org/prizes/physics/2017/press-release/ (2017).
Agostini, P., Krausz, F. & L’Huillier, A. Press release: The Nobel Prize in Physics 2023. The Nobel Prize https://www.nobelprize.org/prizes/physics/2023/press-release/ (2023).
NASA Deep Space Optical Communications (DSOC). NASA https://www.nasa.gov/mission/deep-space-optical-communications-dsoc/ (2023).
Yokoyama, H. & Brorson, S. D. Rate equation analysis of microcavity lasers. J. Appl. Phys. 66, 4801–4805 (1989).
Björk, G. & Yamamoto, Y. Analysis of semiconductor microcavity lasers using rate equations. IEEE J. Quantum Electron. 27, 2386–2396 (1991).
Berini, P. & De Leon, I. Surface plasmon–polariton amplifiers and lasers. Nat. Photon. 6, 16–24 (2012).
Hill, M. T. & Gather, M. C. Advanced in small lasers. Nat. Photon. 8, 908–918 (2014).
Eaton, S. W., Fu, A., Wong, A. B., Ning, C. Z. & Yang, P. Semiconductor nanowire lasers. Nat. Rev. Mater. 1, 16028 (2016).
Ma, R. M. & Oulton, R. F. Applications of nanolasers. Nat. Nanotechnol. 14, 12–22 (2019).
Azzam, S. I. et al. Ten years of spasers and plasmonic nanolasers. Light Sci. Appl. 9, 90 (2020).
Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).
Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).
Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18, 121–128 (2019).
Carlon Zambon, N. et al. Optically controlling the emission chirality of microlasers. Nat. Photon. 13, 283–288 (2019).
Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).
Shao, Z. K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020).
Yang, Z. Q., Shao, Z. K., Chen, H. Z., Mao, X. R. & Ma, R. M. Spin-momentum-locked edge mode for topological vortex lasing. Phys. Rev. Lett. 125, 013903 (2020).
Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).
Mao, X. R., Shao, Z. K., Luan, H. Y., Wang, S. L. & Ma, R. M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).
Dikopoltsev, A. et al. Topological insulator vertical-cavity laser array. Science 373, 1514–1517 (2021).
Wu, H. et al. Photonic nanolaser with extreme optical field confinement. Phys. Rev. Lett. 129, 013902 (2022).
Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature 608, 692–698 (2022).
Zhang, Z. et al. Spin–orbit microlaser emitting in a four-dimensional Hilbert space. Nature 612, 246–251 (2022).
Yang, L., Li, G., Gao, X. & Lu, L. Topological-cavity surface-emitting laser. Nat. Photon. 16, 279–283 (2022).
Chen, Y. et al. Compact spin-valley-locked perovskite emission. Nat. Mater. 22, 1065–1070 (2023).
Hwang, M. S. et al. Vortex nanolaser based on a photonic disclination cavity. Nat. Photon. 18, 286–293 (2024).
Luan, H. Y., Ouyang, Y. H., Zhao, Z. W., Mao, W. Z. & Ma, R. M. Reconfigurable moiré nanolaser arrays with phase synchronization. Nature 624, 282–288 (2023).
Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).
Zhong, X. L. & Li, Z. Y. All-analytical semiclassical theory of spaser performance in a plasmonic nanocavity. Phys. Rev. B 88, 085101 (2013).
Hess, O. & Tsakmakidis, K. L. Metamaterials with quantum gain. Science 339, 654–655 (2013).
Bian, Y. S. & Gong, Q. H. Bow-tie hybrid plasmonic waveguides. J. Lightwave Technol. 32, 4504–4509 (2014).
Chipouline, A. & Küppers, F. Analytical qualitative modeling of passive and active metamaterials. J. Opt. Soc. Am. B 34, 1597–1623 (2017).
Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).
Hill, M. T. et al. Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).
Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).
Hu, S. & Weiss, S. M. Design of photonic crystal cavities for extreme light concentration. ACS Photon. 3, 1647–1653 (2016).
Choi, H., Heuck, M. & Englund, D. Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities. Phys. Rev. Lett. 118, 223605 (2017).
Hu, S. et al. Experimental realization of deep-subwavelength confinement in dielectric optical resonators. Sci. Adv. 4, eaat2355 (2018).
Albrechtsen, M. et al. Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nat. Commun. 13, 6281 (2022).
Babar, A. N. et al. Self-assembled photonic cavities with atomic-scale confinement. Nature 624, 57–63 (2023).
Ma, R. M. et al. Twisted lattice nanocavity with theoretical quality factor exceeding 200 billion. Fundam. Res. 3, 537–543 (2023).
Jackson, J. D. Classical Electrodynamics (Wiley, 1999).
Andersen, J. & Solodukhov, V. Field behavior near a dielectric wedge. IEEE Trans. Antennas Propag. 26, 598–602 (1978).
Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).