• Rohde, M. M., Froend, R. & Howard, J. A global synthesis of managing groundwater dependent ecosystems under sustainable groundwater policy. Groundwater 55, 293–301 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Huggins, X. et al. Overlooked risks and opportunities in groundwatersheds of the world’s protected areas. Nat. Sustain. 6, 855–864 (2023).

  • Doody, T. M. et al. Continental mapping of groundwater dependent ecosystems: a methodological framework to integrate diverse data and expert opinion. J. Hydrol. Reg. Stud. 10, 61–81 (2017).

    Article 

    Google Scholar
     

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ. Res. Lett. 4, 035006 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kløve, B. et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 518, 250–266 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).

  • Konikow, L. F. & Kendy, E. Groundwater depletion: a global problem. Hydrogeol. J. 13, 317–320 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Jasechko, S. & Perrone, D. Global groundwater wells at risk of running dry. Science 372, 418–421 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • de Graaf, I. E. M., Gleeson, T., van Beek, L. P. H., Sutanudjaja, E. H., & Bierkens, M. F. P. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jasechko, S., Seybold, H., Perrone, D., Fan, Y. & Kirchner, J. W. Widespread potential loss of streamflow into underlying aquifers across the USA. Nature 591, 391–395 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rohde, M. M. et al. Establishing ecological thresholds and targets for groundwater management. Nat. Water 2, 312–323 (2024).

  • Rohde, M. M., Stella, J. C., Roberts, D. A. & Singer, M. B. Groundwater dependence of riparian woodlands and the disrupting effect of anthropogenically altered streamflow. Proc. Natl Acad. Sci. USA 118, e2026453118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, R. L. Water rights for groundwater environments as an enabling condition for adaptive water governance. Ecol. Soc. 27, 28 (2022).

    Article 

    Google Scholar
     

  • Saito, L. et al. Managing groundwater to ensure ecosystem function. Groundwater 59, 322–333 (2021).

  • Eamus, D., Froend, R., Loomes, R., Hose, G. & Murray, B. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation. Aust. J. Bot. 54, 97 (2006).

    Article 

    Google Scholar
     

  • Patten, D. T., Rouse, L. & Stromberg, J. C. Isolated spring wetlands in the Great Basin and Mojave Deserts, USA: potential response of vegetation to groundwater withdrawal. Environ. Manage. 41, 398–413 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Cartwright, J. M. et al. Oases of the future? Springs as potential hydrologic refugia in drying climates. Front. Ecol. Environ. 18, 245–253 (2020).

    Article 

    Google Scholar
     

  • Murray, B. R., Hose, G. C., Eamus, D. & Licari, D. Valuation of groundwater-dependent ecosystems: a functional methodology incorporating ecosystem services. Aust. J. Bot. 54, 221 (2006).

    Article 

    Google Scholar
     

  • Howard, J. K., Dooley, K., Brauman, K. A., Klausmeyer, K. R. & Rohde, M. M. Ecosystem services produced by groundwater dependent ecosystems: a framework and case study in California. Front. Water 5, 1115416 (2023).

  • Eamus, D., Zolfaghar, S., Villalobos-Vega, R., Cleverly, J. & Huete, A. Groundwater-dependent ecosystems: recent insights from satellite and field-based studies. Hydrol. Earth Syst. Sci. 19, 4229–4256 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Box, J.B. et al. Mapping terrestrial groundwater-dependent ecosystems in arid Australia using Landsat‐8 time‐series data and singular value decomposition. Remote Sens. Ecol. Conservation 8, 464–476 (2022).

  • Klausmeyer, K. et al. Mapping Indicators of Groundwater Dependent Ecosystems in California: Methods Report (The Nature Conservancy, 2018).

  • Liu, C. et al. Mapping groundwater-dependent ecosystems in arid Central Asia: implications for controlling regional land degradation. Sci. Total Environ. 797, 149027 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duran-Llacer, I. et al. A new method to map groundwater-dependent ecosystem zones in semi-arid environments: a case study in Chile. Sci. Total Environ. 816, 151528 (2022).

  • Brown, J., Bach, L., Aldous, A., Wyers, A. & DeGagné, J. Groundwater-dependent ecosystems in Oregon: an assessment of their distribution and associated threats. Fron. Ecol. Environ. 9, 97–102 (2011).

    Article 

    Google Scholar
     

  • Freed, Z., Schindel, M., Ruffing, C. & Scott, S. Oregon Atlas of Groundwater-Dependent Ecosystems (The Nature Conservancy, 2022); www.groundwaterresourcehub.org/content/dam/tnc/nature/en/documents/groundwater-resource-hub/Oregon_Atlas_of_Groundwater_Dependent_Ecosystems_2022.pdf.

  • Saito, L. et al. Mapping indicators of groundwater dependent ecosystems in Nevada: Important resources for a water-limited state. J. Nevada Water Resources Assoc. 1, 48–72 (2020).

    Article 

    Google Scholar
     

  • Hoogland, T., Heuvelink, G. B. M. & Knotters, M. Mapping water-table depths over time to assess desiccation of groundwater-dependent ecosystems in the Netherlands. Wetlands 30, 137–147 (2010).

    Article 

    Google Scholar
     

  • Kilroy, G., Ryan, J., Coxon, C. & Daly, D. A Framework for the Assessment of Groundwater-Dependent Terrestrial Ecosystems under the Water Framework Directive (Environmental Research Centre, 2008); https://www.epa.ie/publications/research/water/a-framework-for-the-assessment-of-groundwater-dependent-terrestrial-ecosystems-under-the-water-framework-directive.php.

  • Münch, Z. & Conrad, J. Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa. Hydrogeol. J. 15, 19–28 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Martínez-Santos, P., Díaz-Alcaide, S., De la Hera-Portillo, A. & Gómez-Escalonilla, V. Mapping groundwater-dependent ecosystems by means of multi-layer supervised classification. J. Hydrol. 603, 126873 (2021).

    Article 

    Google Scholar
     

  • Gou, S., Gonzales, S. & Miller, G. R. Mapping potential groundwater-dependent ecosystems for sustainable management. Groundwater 53, 99–110 (2014).

    Article 

    Google Scholar
     

  • Anderson, M. C., Allen, R. G., Morse, A. & Kustas, W. P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 122, 50–65 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gleeson, T., Wada, Y., Bierkens, M. F. P., van Beek, L. P. H. & Irawan, D. E. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rohde, M. M. et al. A machine learning approach to predict groundwater levels in California reveals ecosystems at risk. Front. Earth Sci. 9, 784499 (2021).

    Article 

    Google Scholar
     

  • Famiglietti, J. S. & Ferguson, G. The hidden crisis beneath our feet. Science 372, 344–345 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Albano, C. M. et al. A multidataset assessment of climatic drivers and uncertainties of recent trends in evaporative demand across the continental United States. J. Hydrometeorol. 23, 505–519 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Muhammad, K. et al. Socio-political and ecological stresses on traditional pastoral systems: a review. J. Geogr. Sci. 29, 1758–1770 (2019).

    Article 

    Google Scholar
     

  • Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 114, 813–822 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dardel, C. et al. Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens. Environ. 140, 350–364 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Thébaud, B. & Batterbury, S. Sahel pastoralists: opportunism, struggle, conflict and negotiation. A case study from eastern Niger. Global Environ. Change 11, 69–78 (2001).

    Article 

    Google Scholar
     

  • Benjaminsen, T. A., Maganga, F. P. & Abdallah, J. M. The Kilosa killings: political ecology of a farmer–herder conflict in Tanzania. Dev. Change 40, 423–445 (2009).

    Article 

    Google Scholar
     

  • Rodella, A.-S., Zaveri, E. & Bertone, F. The Hidden Wealth of Nations: The Economics of Groundwater in Times of Climate Change (World Bank, 2023).

  • McGuirk, E. & Nunn, N. Transhumant pastoralism, climate change, and conflict in Africa. Rev. Econ. Stud. rdae027 (2024).

  • Devineni, N., Perveen, S. & Lall, U. Assessing chronic and climate-induced water risk through spatially distributed cumulative deficit measures: a new picture of water sustainability in India. Water Resour. Res. 49, 2135–2145 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Perrone, D. et al. Stakeholder integration predicts better outcomes from groundwater sustainability policy. Nat. Commun. 14, 3793 (2023).

  • Elshall, A. S. et al. Groundwater sustainability: a review of the interactions between science and policy. Environ. Res. Lett. 15, 093004 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karra, K. et al. Global land use/land cover with Sentinel 2 and deep learning. In Proc. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS 4704–4707 (IEEE, 2021).

  • Buchhorn, M. et al. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 12, 1044 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LANDFIRE Program: Data Products—Public LANDFIRE Reference Database (LFRDB). Landfire https://landfire.gov/lfrdb.php (2016).

  • Groundwater Dependent Ecosystems Atlas. Bureau of Meteorology www.bom.gov.au/water/groundwater/gde/ (2023).

  • Sabatini, F. M. et al. sPlotOpenban environmentally balanced, open-access, global dataset of vegetation plots. Global Ecol. Biogeogr. 30, 1740–1764 (2021).

    Article 

    Google Scholar
     

  • Sayler, K. Landsat 8 Collection 1 (C1) Land Surface Reflection Code (LaSRC) Product Guide, Version 3 (USGS, 2020); https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1368_L8_C1-LandSurfaceReflectanceCode-LASRC_ProductGuide-v3.pdf.

  • Zhu, Z. & Woodcock, C. E. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sens. Environ. 152, 217–234 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, Z. & Woodcock, C. E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 144, 152–171 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, Z. & Woodcock, C. E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 118, 83–94 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, Z., Wang, S. & Woodcock, C. E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 159, 269–277 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gao, B. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996).

    Article 
    ADS 

    Google Scholar
     

  • McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17, 1425–1432 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Landsat Modified Soil Adjusted Vegetation Index. USGS www.usgs.gov/landsat-missions/landsat-modified-soil-adjusted-vegetation-index (2024).

  • Huntington, J. et al. Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive. Remote Sens. Environ. 185, 186–197 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gan, R. et al. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 11, e1974 (2018).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marthews, T. R., Dadson, S. J., Lehner, B., Abele, S. & Gedney, N. High-resolution global topographic index values for use in large-scale hydrological modelling. Hydrol. Earth Syst. Sci. 19, 91–104 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Theobald, D. M., Harrison-Atlas, D., Monahan, W. B. & Albano, C. M. Ecologically-relevant maps of landforms and physiographic diversity for climate adaptation planning. PLoS ONE 10, e0143619 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pastore, M., Loro, P. A. D., Mingione, M. & Calcagni, A. Overlapping: estimation of overlapping in empirical distributions. https://cran.r-project.org/web/packages/overlapping/overlapping.pdf (CRAN, 2022).

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar
     

  • Machine Learning. Google https://developers.google.com/machine-learning/decision-forests/random-forests (2024).

  • Belgiu, M. & Drăguţ, L. Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogramm. 114, 24–31 (2016).

    Article 

    Google Scholar
     

  • Maxwell, A. E., Warner, T. A. & Fang, F. Implementation of machine-learning classification in remote sensing: an applied review. Int. J. Remote Sens. 39, 2784–2817 (2018).

    Article 

    Google Scholar
     

  • Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ek, M. B. et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 108, 8851 (2003).

  • Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 99, 14415–14428 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Rodell, M. & Famiglietti, J. S. The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. J. Hydrol. 263, 245–256 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Girotto, M. et al. Benefits and pitfalls of GRACE data assimilation: a case study of terrestrial water storage depletion in India. Geophys. Res. Lett. 44, 4107–4115 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58, 403–414 (2008).

    Article 

    Google Scholar
     

  • The World Database on Protected Areas (WDPA). https://data.apps.fao.org/catalog/dataset/bfcb8c96-648c-4c31-9702-20fc5d4d5b49 (FAO, 2023).

  • Bingham, H.C. et al. User Manual for the World Database on Protected Areas and world database on other effective area-based conservation measures: 1.6 (UNEP & WCMC, 2019); http://wcmc.io/WDPA_Manual.

  • Rohde, M.M. et al. Data, code, and outputs for: groundwater-dependent ecosystem map exposes global dryland protection needs. Zenodo https://doi.org/10.5281/zenodo.11062894 (2024).

  • R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008); www.R-project.org/.

  • Hijmans, R. J. Spatial data analysis. R package terra v.1.7-71 (R Foundation for Statistical Computing, 2024); https://CRAN.R-project.org/package=terra.

  • O’Brien, J. rasterDT: Fast Raster Summary and Manipulation (2022).

  • Wickham, H. ggplot2: elegant graphics for data analysis (Springer, 2016).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *