• Shim, H., Monticone, F. & Miller, O. D. Fundamental limits to the refractive index of transparent optical materials. Adv. Mater. 33, 2103946 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Khurgin, J. B. Expanding the photonic palette: exploring high index materials. ACS Photon. 9, 743–751 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Khurgin, J. B. Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss. 178, 109–122 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    Article 
    ADS 

    Google Scholar
     

  • Weiss, R., Barish, B. C. & Thorne K. S. Press release: The Nobel Prize in Physics 2017. The Nobel Prize https://www.nobelprize.org/prizes/physics/2017/press-release/ (2017).

  • Agostini, P., Krausz, F. & L’Huillier, A. Press release: The Nobel Prize in Physics 2023. The Nobel Prize https://www.nobelprize.org/prizes/physics/2023/press-release/ (2023).

  • NASA Deep Space Optical Communications (DSOC). NASA https://www.nasa.gov/mission/deep-space-optical-communications-dsoc/ (2023).

  • Yokoyama, H. & Brorson, S. D. Rate equation analysis of microcavity lasers. J. Appl. Phys. 66, 4801–4805 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Björk, G. & Yamamoto, Y. Analysis of semiconductor microcavity lasers using rate equations. IEEE J. Quantum Electron. 27, 2386–2396 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Berini, P. & De Leon, I. Surface plasmon–polariton amplifiers and lasers. Nat. Photon. 6, 16–24 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hill, M. T. & Gather, M. C. Advanced in small lasers. Nat. Photon. 8, 908–918 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eaton, S. W., Fu, A., Wong, A. B., Ning, C. Z. & Yang, P. Semiconductor nanowire lasers. Nat. Rev. Mater. 1, 16028 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ma, R. M. & Oulton, R. F. Applications of nanolasers. Nat. Nanotechnol. 14, 12–22 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Azzam, S. I. et al. Ten years of spasers and plasmonic nanolasers. Light Sci. Appl. 9, 90 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18, 121–128 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carlon Zambon, N. et al. Optically controlling the emission chirality of microlasers. Nat. Photon. 13, 283–288 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, Z. K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. Q., Shao, Z. K., Chen, H. Z., Mao, X. R. & Ma, R. M. Spin-momentum-locked edge mode for topological vortex lasing. Phys. Rev. Lett. 125, 013903 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao, X. R., Shao, Z. K., Luan, H. Y., Wang, S. L. & Ma, R. M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dikopoltsev, A. et al. Topological insulator vertical-cavity laser array. Science 373, 1514–1517 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, H. et al. Photonic nanolaser with extreme optical field confinement. Phys. Rev. Lett. 129, 013902 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature 608, 692–698 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Spin–orbit microlaser emitting in a four-dimensional Hilbert space. Nature 612, 246–251 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L., Li, G., Gao, X. & Lu, L. Topological-cavity surface-emitting laser. Nat. Photon. 16, 279–283 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Compact spin-valley-locked perovskite emission. Nat. Mater. 22, 1065–1070 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hwang, M. S. et al. Vortex nanolaser based on a photonic disclination cavity. Nat. Photon. 18, 286–293 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luan, H. Y., Ouyang, Y. H., Zhao, Z. W., Mao, W. Z. & Ma, R. M. Reconfigurable moiré nanolaser arrays with phase synchronization. Nature 624, 282–288 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhong, X. L. & Li, Z. Y. All-analytical semiclassical theory of spaser performance in a plasmonic nanocavity. Phys. Rev. B 88, 085101 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hess, O. & Tsakmakidis, K. L. Metamaterials with quantum gain. Science 339, 654–655 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian, Y. S. & Gong, Q. H. Bow-tie hybrid plasmonic waveguides. J. Lightwave Technol. 32, 4504–4509 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chipouline, A. & Küppers, F. Analytical qualitative modeling of passive and active metamaterials. J. Opt. Soc. Am. B 34, 1597–1623 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hill, M. T. et al. Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, S. & Weiss, S. M. Design of photonic crystal cavities for extreme light concentration. ACS Photon. 3, 1647–1653 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Choi, H., Heuck, M. & Englund, D. Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities. Phys. Rev. Lett. 118, 223605 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hu, S. et al. Experimental realization of deep-subwavelength confinement in dielectric optical resonators. Sci. Adv. 4, eaat2355 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albrechtsen, M. et al. Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nat. Commun. 13, 6281 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Babar, A. N. et al. Self-assembled photonic cavities with atomic-scale confinement. Nature 624, 57–63 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, R. M. et al. Twisted lattice nanocavity with theoretical quality factor exceeding 200 billion. Fundam. Res. 3, 537–543 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Jackson, J. D. Classical Electrodynamics (Wiley, 1999).

  • Andersen, J. & Solodukhov, V. Field behavior near a dielectric wedge. IEEE Trans. Antennas Propag. 26, 598–602 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *