• Duhamel, H. L. Sur une racine qui a la faculte de triendre en rouge les os des animaux vivants. Mem. Acad. R. Sci. Paris 52, 1–13 (1739).


    Google Scholar
     

  • Rana, R. S., Wu, J. S. & Eisenberg, R. L. Periosteal reaction. Am. J. Roentgenol. 193, W259–W272 (2009).


    Google Scholar
     

  • Vilchez Mercedes, S. A. et al. Decoding leader cells in collective cancer invasion. Nat. Rev. Cancer 21, 592–604 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat. Rev. Dis. Primers 4, 17105 (2018).

    PubMed 

    Google Scholar
     

  • Winer, A., Adams, S. & Mignatti, P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol. Cancer Ther. 17, 1147–1155 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, H. W., Defamie, V., Waterhouse, P. & Khokha, R. TIMPs: versatile extracellular regulators in cancer. Nat. Rev. Cancer 17, 38–53 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Hermann, C. D. et al. TIMP1 expression underlies sex disparity in liver metastasis and survival in pancreatic cancer. J. Exp. Med. 218, e20210911 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimoda, M. et al. Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat. Cell Biol. 16, 889–901 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Grünwald, B. et al. Pancreatic premalignant lesions secrete tissue inhibitor of metalloproteinases-1, which activates hepatic stellate cells via CD63 signaling to create a premetastatic niche in the liver. Gastroenterology 151, 1011–1024.e1017 (2016).

    PubMed 

    Google Scholar
     

  • Osawa, Y. et al. Liver acid sphingomyelinase inhibits growth of metastatic colon cancer. J. Clin. Invest. 123, 834–843 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 6, 93 (2020).

  • Tsukasaki, M. et al. Periosteal stem cells control growth plate stem cells during postnatal skeletal growth. Nat. Commun. 13, 4166 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. et al. CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion. J. Clin. Invest. 129, 5381–5399 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takaoka, M. et al. Ha-RasG12V induces senescence in primary and immortalized human esophageal keratinocytes with p53 dysfunction. Oncogene 23, 6760–6768 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Nakagawa, H. et al. The targeting of the cyclin D1 oncogene by an Epstein–Barr virus promoter in transgenic mice causes dysplasia in the tongue, esophagus and forestomach. Oncogene 14, 1185–1190 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol. 16, 1260–1270 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashimoto, K., Sato, S., Ochi, H., Takeda, S. & Futakuchi, M. Calvarial bone implantation and. Bio Protoc. 9, e3151 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashimoto, K. et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc. Natl Acad. Sci. USA 115, 2204–2209 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Network, C. G. A. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).

    ADS 

    Google Scholar
     

  • Alshetaiwi, H. et al. Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci. Immunol. 5, eaay6017 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsukasaki, M. & Takayanagi, H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat. Rev. Immunol. 19, 626–642 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Debnath, S. et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133–139 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Otani, S. et al. Runx3 is required for oncogenic Myc upregulation in p53-deficient osteosarcoma. Oncogene 41, 683–691 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Julien, A. et al. Skeletal stem/progenitor cells in periosteum and skeletal muscle share a common molecular response to bone injury. J. Bone Miner. Res. 37, 1545–1561 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Eckfeld, C. et al. TIMP-1 is a novel ligand of amyloid precursor protein and triggers a proinflammatory phenotype in human monocytes. J. Cell Biol. 222, e202206095 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirasawa, T. & Kuratani, S. Evolution of the vertebrate skeleton: morphology, embryology, and development. Zoological Lett. 1, 2 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimada, A. et al. Trunk exoskeleton in teleosts is mesodermal in origin. Nat. Commun. 4, 1639 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Kajita, M. et al. Filamin acts as a key regulator in epithelial defence against transformed cells. Nat. Commun. 5, 4428 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. 42, 211–221 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • de la Cova, C., Abril, M., Bellosta, P., Gallant, P. & Johnston, L. A. Drosophila myc regulates organ size by inducing cell competition. Cell 117, 107–116 (2004).

    PubMed 

    Google Scholar
     

  • Hogan, C. et al. Characterization of the interface between normal and transformed epithelial cells. Nat. Cell Biol. 11, 460–467 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, T. et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130, 811–823 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsukasaki, M. et al. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat. Metab. 2, 1382–1390 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Asano, T. et al. Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nat. Metab. 1, 868–875 (2019).

    PubMed 

    Google Scholar
     

  • Tsukasaki, M. et al. Host defense against oral microbiota by bone-damaging T cells. Nat. Commun. 9, 701 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsukasaki, M. et al. OPG production matters where it happened. Cell Rep. 32, 108124 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Z. et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 1, e90 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Galaxy Community The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 50, W345–W351 (2022).


    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, M. et al. ETS1 governs pathological tissue-remodeling programs in disease-associated fibroblasts. Nat. Immunol. 23, 1330–1341 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Akimoto, M., Maruyama, R., Takamaru, H., Ochiya, T. & Takenaga, K. Soluble IL-33 receptor sST2 inhibits colorectal cancer malignant growth by modifying the tumour microenvironment. Nat. Commun. 7, 13589 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kazu. nakamurakazu/Stromal-defence-against-cancer-by-the-periosteum: stromal defence against cancer by the periosteum. Zenodo https://doi.org/10.5281/zenodo.12204268 (2024).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *