• Ader, M. et al. Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: assumptions and perspectives. Chem. Geol. 429, 93–110 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • Stüeken, E. E., Kipp, M. A., Koehler, M. C. & Buick, R. The evolution of Earth’s biogeochemical nitrogen cycle. Earth-Sci. Rev. 160, 220–239 (2016).

    ADS 

    Google Scholar
     

  • Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomazo, C., Ader, M. & Philippot, P. Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle. Geobiology 9, 107–120 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Stüeken, E. E., Buick, R. & Schauer, A. J. Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet. Sci. Lett. 411, 1–10 (2015).

    ADS 

    Google Scholar
     

  • Rossignol, C. et al. Stratigraphy and geochronological constraints of the Serra Sul Formation (Carajás Basin, Amazonian Craton, Brazil). Precambrian Res. 351, 105981 (2020).

    CAS 

    Google Scholar
     

  • Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochem. Cycles 8, 103–116 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, X., Sigman, D. M., Morel, F. M. M. & Kraepiel, A. M. L. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. Proc. Natl Acad. Sci. 111, 4782–4787 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sigman, D. M., Karsh, K. L. & Casciotti, K. L. in Encyclopedia of Ocean Sciences 2nd edn (Steele, J. H.) 40–54 (Academic Press, 2009).

  • Möbius, J. Isotope fractionation during nitrogen remineralization (ammonification): implications for nitrogen isotope biogeochemistry. Geochim. Cosmochim. Acta 105, 422–432 (2013).

    ADS 

    Google Scholar
     

  • Mariotti, A. et al. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62, 413–430 (1981).

    CAS 

    Google Scholar
     

  • Dalsgaard, T. & Thamdrup, B. Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl. Environ. Microbiol. 68, 3802–3808 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishizawa, M., Sano, Y., Ueno, Y. & Maruyama, S. Speciation and isotope ratios of nitrogen in fluid inclusions from seafloor hydrothermal deposits at 3.5 Ga. Earth Planet. Sci. Lett. 254, 332–344 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Marty, B., Zimmermann, L., Pujol, M., Burgess, R. & Philippot, P. Nitrogen isotopic composition and density of the Archean atmosphere. Science 342, 101–104 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stüeken, E. E., Buick, R., Guy, B. M. & Koehler, M. C. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520, 666–669 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Kipp, M. A., Stüeken, E. E., Yun, M., Bekker, A. & Buick, R. Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era. Earth Planet. Sci. Lett. 500, 117–126 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Koehler, M. C., Buick, R., Kipp, M. A., Stüeken, E. E. & Zaloumis, J. Transient surface ocean oxygenation recorded in the 2.66-Ga Jeerinah Formation, Australia. Proc. Natl Acad. Sci. 115, 7711–7716 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zerkle, A. L. et al. Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542, 465–467 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garvin, J., Buick, R., Anbar, A. D., Arnold, G. L. & Kaufman, A. J. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323, 1045–1048 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Godfrey, L. V. & Falkowski, P. G. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2, 725–729 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Beaumont, V. & Robert, F. Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? Precambrian Res. 96, 63–82 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Jia, Y. & Kerrich, R. Nitrogen 15–enriched Precambrian kerogen and hydrothermal systems. Geochem. Geophys. Geosyst. 5, Q07005 (2004).

    ADS 

    Google Scholar
     

  • Kerrich, R., Jia, Y., Manikyamba, C. & Naqvi, S. M. Secular variations of N-isotopes in terrestrial reservoirs and ore deposits. Geol. Soc. Am. Bull. 198, 81–104 (2006).


    Google Scholar
     

  • Stüeken, E. E. et al. Environmental niches and metabolic diversity in Neoarchean lakes. Geobiology 15, 767–783 (2017).

    PubMed 

    Google Scholar
     

  • Hayes, J. M. in Early Life Earth, Nobel Symposium, No. 84 (ed. Bengston, S.) 220–236 (Columbia Univ. Press, 1994).

  • Awramik, S. M. & Buchheim, H. P. A giant, Late Archean lake system: the Meentheena Member (Tumbiana Formation; Fortescue Group), Western Australia. Precambrian Res. 174, 215–240 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Rossignol, C. et al. Unraveling one billion years of geological evolution of the southeastern Amazonia Craton from detrital zircon analyses. Geosci. Front. 13, 101202 (2021).


    Google Scholar
     

  • Perelló, J., Zulliger, G., García, A. & Creaser, R. A. Revisiting the IOCG geology and age of Alemão in the Igarapé Bahia camp, Carajás province, Brazil. J. South Am. Earth Sci. 124, 104273 (2023).


    Google Scholar
     

  • Tomkins, A. G. et al. Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere. Nature 533, 235–238 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stüeken, E. E., Boocock, T. J., Robinson, A., Mikhail, S. & Johnson, B. W. Hydrothermal recycling of sedimentary ammonium into oceanic crust and the Archean ocean at 3.24 Ga. Geology 49, 822–826 (2021).

    ADS 

    Google Scholar
     

  • Figueiredo e Silva, R. C., Lobato, L. M., Zucchetti, M., Hagemann, S. & Vennemann, T. Geotectonic signature and hydrothermal alteration of metabasalts under- and overlying the giant Serra Norte iron deposits, Carajás mineral Province. Ore Geol. Rev. 120, 103407 (2020).


    Google Scholar
     

  • Martins, P. L. G. et al. Low paleolatitude of the Carajás Basin at 2.75 Ga: paleomagnetic evidence from basaltic flows in Amazonia. Precambrian Res. 365, 106411 (2021).

    CAS 

    Google Scholar
     

  • Li, L., Lollar, B. S., Li, H., Wortmann, U. G. & Lacrampe-Couloume, G. Ammonium stability and nitrogen isotope fractionations for NH4+–NH3(aq)–NH3(gas) systems at 20–70 °C and pH of 2–13: applications to habitability and nitrogen cycling in low-temperature hydrothermal systems. Geochim. Cosmochim. Acta 84, 280–296 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Halevy, I. & Bachan, A. The geologic history of seawater pH. Science 355, 1069–1071 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tesdal, J.-E., Galbraith, E. & Kienast, M. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records. Biogeosciences 10, 101–118 (2013).

    ADS 

    Google Scholar
     

  • Hoch, M. P., Fogel, M. L. & Kirchman, D. L. Isotope fractionation associated with ammonium uptake by a marine bacterium. Limnol. Oceanogr. 37, 1447–1459 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • Papineau, D. et al. High primary productivity and nitrogen cycling after the Paleoproterozoic phosphogenic event in the Aravalli Supergroup, India. Precambrian Res. 171, 37–56 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Yang, J. et al. Ammonium availability in the Late Archaean nitrogen cycle. Nat. Geosci. 12, 553–557 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Saitoh, M. et al. Nitrogen isotope record from a mid-oceanic paleo-atoll limestone to constrain the redox state of the Panthalassa ocean in the Capitanian (Late Guadalupian, Permian). Paleoceanogr. Paleoclimatol. 38, e2022PA004573 (2023).


    Google Scholar
     

  • Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandernack, K. W., Mills, C. T., Johnson, C. A., Rahn, T. & Kinney, C. The δ15N and δ18O values of N2O produced during the co-oxidation of ammonia by methanotrophic bacteria. Chem. Geol. 267, 96–107 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Casciotti, K. L. Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochim. Cosmochim. Acta 73, 2061–2076 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Grotzinger, J. P. & Kasting, J. F. New constraints on Precambrian ocean composition. J. Geol. 101, 235–243 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pellerin, A. et al. Iron-mediated anaerobic ammonium oxidation recorded in the early Archean ferruginous ocean. Geobiology 21, 277–289 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Bouyon, A. et al. Multiple sulfur isotope record from the Precambrian of South America shows an unusual trend. American Geophysical Union, Fall Meeting 2018, abstract #V31B-04 (2018).

  • Thomazo, C., Ader, M., Farquhar, J. & Philippot, P. Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth Planet. Sci. Lett. 279, 65–75 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M. & Stewart, F. J. Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl Acad. Sci. 109, 15996–16003 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boocock, T. J., Mikhail, S., Prytulak, J., Di Rocco, T. & Stüeken, E. E. Nitrogen mass fraction and stable isotope ratios for fourteen geological reference materials: evaluating the applicability of elemental analyser versus sealed tube combustion methods. Geostand. Geoanalytical Res. 44, 537–551 (2020).

    CAS 

    Google Scholar
     

  • Ader, M. et al. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: a nitrogen isotope perspective. Earth Planet. Sci. Lett. 396, 1–13 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Kendall, C. & Grim, E. Combustion tube method for measurement of nitrogen isotope ratios using calcium oxide for total removal of carbon dioxide and water. Anal. Chem. 62, 526–529 (1990).

    CAS 

    Google Scholar
     

  • Busigny, V., Ader, M. & Cartigny, P. Quantification and isotopic analysis of nitrogen in rocks at the ppm level using sealed tube combustion technique: a prelude to the study of altered oceanic crust. Chem. Geol. 223, 249–258 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Fraga-Ferreira, P. L. et al. The Nitrogen Cycle in an epeiric sea in the core of Gondwana Supercontinent: a study on the Ediacaran-Cambrian Bambuí Group, east-central Brazil. Front. Earth Sci. 9, 692895 (2021).


    Google Scholar
     

  • Blake, T. S., Buick, R., Brown, S. J. A. & Barley, M. E. Geochronology of a Late Archaean flood basalt province in the Pilbara Craton, Australia: constraints on basin evolution, volcanic and sedimentary accumulation, and continental drift rates. Precambrian Res. 133, 143–173 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Arndt, N. T., Nelson, D. R., Compston, W., Trendall, A. F. & Thorne, A. M. The age of the Fortescue Group, Hamersley Basin, Western Australia, from ion microprobe zircon U‐Pb results. Aust. J. Earth Sci. 38, 261–281 (1991).

    ADS 

    Google Scholar
     

  • Kasbohm, J., Schoene, B., Maclennan, S. A., Evans, D. A. D. & Weiss, B. P. Paleogeography and high-precision geochronology of the Neoarchean Fortescue Group, Pilbara, Western Australia. Precambrian Res. 394, 107114 (2023).

    CAS 

    Google Scholar
     

  • Martins, P. L. G. et al. Neoarchean magmatism in the southeastern Amazonian Craton, Brazil: petrography, geochemistry and tectonic significance of basalts from the Carajás Basin. Precambrian Res. 302, 340–357 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Lepot, K., Benzerara, K., Brown, G. E. & Philippot, P. Microbially influenced formation of 2,724-million-year-old stromatolites. Nat. Geosci. 1, 118–121 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Vasquez, M. L. & da Rosa-Costa, L. T. Geologia e Recursos Minerais do Estado do Pará (CPRM, 2008).

  • Rego, E. S. et al. Anoxygenic photosynthesis linked to Neoarchean iron formations in Carajás (Brazil). Geobiology 19, 326–341 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kamber, B. S., Webb, G. E. & Gallagher, M. The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity. J. Geol. Soc. 171, 745–763 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • de Melo, G. H. C. et al. Evolution of the Igarapé Bahia Cu-Au deposit, Carajás Province (Brazil): early syngenetic chalcopyrite overprinted by IOCG mineralization. Ore Geol. Rev. 111, 102993 (2019).


    Google Scholar
     

  • Dreher, A. M., Xavier, R. P. & Martini, S. L. Fragmental rocks of the Igarapé Bahia Cu-Au deposit, Carajas Mineral Province, Brazil. Rev. Bras. Geociências 35, 359–368 (2005).


    Google Scholar
     

  • Dreher, A. M., Xavier, R. P., Taylor, B. E. & Martini, S. L. New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia Cu–Au deposit, Carajás Province, Brazil. Miner. Deposita 43, 161–184 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Galarza, M. A., Macambira, M. J. B. & Villas, R. N. Dating and isotopic characteristics (Pb and S) of the Fe oxide–Cu–Au–U–REE Igarapé Bahia ore deposit, Carajás mineral province, Pará state, Brazil. J. South Am. Earth Sci. 25, 377–397 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Ronzê, P. C., Soares, A. D., dos Santos, M. & Barreira, C. F. in Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective (ed. Porter, T. M.) 191–202 (PGC Publishing, 2000).

  • Coffey, J. M., Flannery, D. T., Walter, M. R. & George, S. C. Sedimentology, stratigraphy and geochemistry of a stromatolite biofacies in the 2.72 Ga Tumbiana Formation, Fortescue Group, Western Australia. Precambrian Res. 236, 282–296 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Lowe, D. R. Sediment gravity flows; II, depositional models with special reference to the deposits of high-density turbidity currents. J. Sediment. Res. 52, 279–297 (1982).


    Google Scholar
     

  • Mulder, T. & Alexander, J. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology 48, 269–299 (2001).

    ADS 

    Google Scholar
     

  • Nemec, W. & Steel, R. J. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. Sedimentology of Gravels and Conglomerates — Memoir 10, 1–31 (1984).

  • Postma, G., Kleverlaan, K. & Cartigny, M. J. B. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model. Sedimentology 61, 2268–2290 (2014).


    Google Scholar
     

  • Postma, G. & Cartigny, M. J. B. Supercritical and subcritical turbidity currents and their deposits—a synthesis. Geology 42, 987–990 (2014).

    ADS 

    Google Scholar
     

  • Walker, R. G. Generalized facies models for resedimented conglomerates of turbidite association. Geol. Soc. Am. Bull. 86, 737–748 (1975).

    ADS 

    Google Scholar
     

  • Myrow, P. M. et al. Flat-pebble conglomerate: its multiple origins and relationship to metre-scale depositional cycles. Sedimentology 51, 973–996 (2004).

    ADS 

    Google Scholar
     

  • Lehmann, M. F., Bernasconi, S. M., Barbieri, A. & McKenzie, J. A. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmochim. Acta 66, 3573–3584 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Bebout, G. E. & Fogel, M. L. Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: implications for metamorphic devolatilization history. Geochim. Cosmochim. Acta 56, 2839–2849 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • Boyd, S. R. & Philippot, P. Precambrian ammonium biogeochemistry: a study of the Moine metasediments, Scotland. Chem. Geol. 144, 257–268 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Haendel, D., Mühle, K., Nitzsche, H.-M., Stiehl, G. & Wand, U. Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochim. Cosmochim. Acta 50, 749–758 (1986).

    ADS 
    CAS 

    Google Scholar
     

  • Jia, Y. Nitrogen isotope fractionations during progressive metamorphism: a case study from the Paleozoic Cooma metasedimentary complex, southeastern Australia. Geochim. Cosmochim. Acta 70, 5201–5214 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Ader, M., Boudou, J.-P., Javoy, M., Goffe, B. & Daniels, E. Isotope study on organic nitrogen of Westphalian anthracites from the Western Middle field of Pennsylvania (U.S.A.) and from the Bramsche Massif (Germany). Org. Geochem. 29, 315–323 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Ader, M. et al. Nitrogen isotopic evolution of carbonaceous matter during metamorphism: methodology and preliminary results. Chem. Geol. 232, 152–169 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Boudou, J.-P. et al. Organic nitrogen chemistry during low-grade metamorphism. Geochim. Cosmochim. Acta 72, 1199–1221 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Stüeken, E. E., Zaloumis, J., Meixnerová, J. & Buick, R. Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks. Geochim. Cosmochim. Acta 217, 80–94 (2017).

    ADS 

    Google Scholar
     

  • Stüeken, E. E., Gregory, D. D., Mukherjee, I. & McGoldrick, P. Sedimentary exhalative venting of bioavailable nitrogen into the early ocean. Earth Planet. Sci. Lett. 565, 116963 (2021).


    Google Scholar
     

  • Cordani, U. G. et al. Tectonic map of South America=Mapa tectônico da América do Sul (Commission for the Geological Map of the World, 2016).

  • Vasquez, M. L., Sousa, C. S. & Carvalho, J. M. A. Mapa geológico e de recursos minerais do Estado do Pará, escala 1: 1.000. 000. Programa Geol. Bras. Belém CPRM (2008).

  • Machado, N., Lindenmayer, Z., Krogh, T. E. & Lindenmayer, D. U-Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil. Precambrian Res. 49, 329–354 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • Trendall, A. F., Basei, M. A. S., de Laeter, J. R. & Nelson, D. R. SHRIMP zircon U–Pb constraints on the age of the Carajás formation, Grão ParáGroup, Amazon Craton. J. South Am. Earth Sci. 11, 265–277 (1998).

    ADS 

    Google Scholar
     

  • Rossignol, C. et al. Neoarchean environments associated with the emplacement of a large igneous province: insights from the Carajás Basin, Amazonia Craton. J. South Am. Earth Sci. 130, 104574 (2023).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *