Yoder, R. A. & Johnston, J. N. A case study in biomimetic total synthesis: polyolefin carbocyclizations to terpenes and steroids. Chem. Rev. 105, 4730–4756 (2005).
Christianson, D. W. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 106, 3412–3442 (2006).
Christianson, D. W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117, 11570–11648 (2017).
Ishihara, K., Nakamura, S. & Yamamoto, H. The first enantioselective biomimetic cyclization of polyprenoids. J. Am. Chem. Soc. 121, 4906–4907 (1999).
Schäfer, B. Ambrox®. Chem. Unserer Zeit 45, 374–388 (2011).
Ungarean, C. N., Southgate, E. H. & Sarlah, D. Enantioselective polyene cyclizations. Org. Biomol. Chem. 14, 5454–5467 (2016).
Eichhorn, E. & Schroeder, F. From ambergris to (−)-ambrox: chemistry meets biocatalysis for sustainable (−)-ambrox production. J. Agric. Food Chem. 71, 5042–5052 (2023).
Stork, G. & Burgstahler, A. W. The stereochemistry of polyene cyclization. J. Am. Chem. Soc. 77, 5068–5077 (1955).
Eschenmoser, A., Ruzicka, L., Jeger, O. & Arigoni, D. Zur Kenntnis der Triterpene. 190. Mitteilung. Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen. Helv. Chim. Acta 38, 1890–1904 (1955).
Eschenmoser, A. & Arigoni, D. Revisited after 50 years: the ‘stereochemical interpretation of the biogenetic isoprene rule for the triterpenes’. Helv. Chim. Acta 88, 3011–3050 (2005).
Wendt, K. U., Poralla, K. & Schulz, G. E. Structure and function of a squalene cyclase. Science 277, 1811–1815 (1997).
Wendt, K., Lenhart, A. & Schulz, G. The structure of the membrane protein squalene-hopene cyclase at 2.0 å resolution. J. Mol. Biol. 286, 175–187 (1999).
Reinert, D. J., Balliano, G. & Schulz, G. E. Conversion of squalene to the pentacarbocyclic hopene. Chem. Biol. 11, 121–126 (2004).
Johnson, W. S. Nonenzymic biogenetic-like olefinic cyclizations. Acc. Chem. Res. 1, 1–8 (1968).
Wendt, K. U., Schulz, G. E., Corey, E. J. & Liu, D. R. Enzyme Mechanisms for Polycyclic Triterpene Formation. Angew. Chem. Int. Ed. 39, 2812–2833 (2000).
Ohloff, G. in Riechstoffe und Geruchssinn 209–214 (Springer, 1990).
Ohloff, G., Schulte‐Elte, K. H. & Müller, B. L. Formation of ambergris odorants from ambrein under simulated natural conditions. Helv. Chim. Acta 60, 2763–2766 (1977).
Ohloff, G., Winter, B. & Fehr, C. in Perfumes (eds Müller, P. M. & Lamparsky, D.) 289–296 (Springer, 1994).
Ohloff, G., Giersch, W., Pickenhagen, W., Furrer, A. & Frei, B. Significance of the geminal dimethyl group in the odor principle of Ambrox®. Helv. Chim. Acta 68, 2022–2029 (1985).
Escher, S., Giersch, W., Niclass, Y., Bernardinelli, G. & Ohloff, G. Configuration‐odor relationships in 5β‐ambrox. Helv. Chim. Acta 73, 1935–1947 (1990).
Ohloff, G. in Gustation and Olfaction (eds Ohloff, G. & Thomas, A. F.) 178−183 (Academic Press, 1971).
Rossiter, K. J. Structure−odor relationships. Chem. Rev. 96, 3201–3240 (1996).
Hayase, K. & Igarashi, K. Method for producing (−)-ambroxan®. JP patent JP2009/060799 (2007).
Breuer, M., Hörster, A. & Hauer, B. Biokatalytische herstellung von ambroxan. Int. patent WO2010/139719 (2009).
Breuer, M. et al. Verfahren zur biokatalytischen cyclisierung von terpenen und darin einsetzbare cyclase-mutanten. Int. patent WO2012/066059 (2010).
Breuer, M., Hörster, A. & Hauer, B. Biocatalytic production of ambroxan. US patent 2012/0135477 (2011).
Eichhorn, E., Schilling, B., Wahler, D., Fourage, L. & Locher, E. Enzymes and applications thereof. Int. patent WO2016/170099 (2015).
Moody, T. S., Miskelly, I. R. & Quinn, D. J. Squalene hopene cyclase and use thereof for producing ambroxan. Int. patent WO2018/157021 (2017).
Eichhorn, E. et al. Biocatalytic process for (−)-ambrox production using squalene hopene cyclase. Adv. Synth. Catal. 360, 2339–2351 (2018).
Eichhorn, E. & Ullmann, C. Squalene hopene cyclase (SHC) variants. Int. patent WO2021/110848 (2021).
Eichhorn, E., Hauer, B. & Schneider, A. SHC enzymes and enzyme variants. Int. patent WO2023/175123 (2023).
Barrett, A., Ma, T.-K. & Mies, T. Recent developments in polyene cyclizations and their applications in natural product synthesis. Synthesis 51, 67–82 (2019).
Felix, R. J., Munro-Leighton, C. & Gagné, M. R. Electrophilic Pt(II) complexes: precision instruments for the initiation of transformations mediated by the cation–olefin reaction. Acc. Chem. Res. 47, 2319–2331 (2014).
Surendra, K. & Corey, E. J. Highly enantioselective proton-initiated polycyclization of polyenes. J. Am. Chem. Soc. 134, 11992–11994 (2012).
Sakakura, A., Ukai, A. & Ishihara, K. Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites. Nature 445, 900–903 (2007).
Ishihara, K., Ishibashi, H. & Yamamoto, H. Enantio- and diastereoselective stepwise cyclization of polyprenoids induced by chiral and achiral LBAs. A new entry to (−)-ambrox, (+)-podocarpa-8,11,13-triene diterpenoids, and (−)-tetracyclic polyprenoid of sedimentary origin. J. Am. Chem. Soc. 124, 3647–3655 (2002).
Snowden, R. L. et al. Internal nucleophilic termination in biomimetic acid mediated polyene cyclizations: stereochemical and mechanistic implications. Synthesis of (±)-ambrox and its diastereoisomers. J. Org. Chem. 57, 955–960 (1992).
Tsuji, N. et al. Activation of olefins via asymmetric Brønsted acid catalysis. Science 359, 1501–1505 (2018).
Zhang, P., Tsuji, N., Ouyang, J. & List, B. Strong and confined acids catalyze asymmetric intramolecular hydroarylations of unactivated olefins with indoles. J. Am. Chem. Soc. 143, 675–680 (2021).
Maji, R. et al. A catalytic asymmetric hydrolactonization. J. Am. Chem. Soc. 145, 8788–8793 (2023).
Properzi, R. et al. Catalytic enantiocontrol over a non-classical carbocation. Nat. Chem. 12, 1174–1179 (2020).
Wakchaure, V. N. et al. Catalytic asymmetric cationic shifts of aliphatic hydrocarbons. Nature 625, 287–292 (2024).
Kaib, P. S. J., Schreyer, L., Lee, S., Properzi, R. & List, B. Extremely active organocatalysts enable a highly enantioselective addition of allyltrimethylsilane to aldehydes. Angew. Chem. Int. Ed. 55, 13200–13203 (2016).
Schreyer, L., Properzi, R. & List, B. IDPi catalysis. Angew. Chem. Int. Ed. 58, 12761–12777 (2019).
Cheng, J. K., Xiang, S. & Tan, B. Imidodiphosphorimidates (IDPis): catalyst motifs with unprecedented reactivity and selectivity. Chin. J. Chem. 41, 685–694 (2023).
Arnold, A. M. et al. Enzyme-like polyene cyclizations catalyzed by dynamic, self-assembled, supramolecular fluoro alcohol-amine clusters. Nat. Commun. 14, 813 (2023).
Arnold, A. M., Pöthig, A., Drees, M. & Gulder, T. NXS, Morpholine, and HFIP: the ideal combination for biomimetic haliranium-induced polyene cyclizations. J. Am. Chem. Soc. 140, 4344–4353 (2018).
Tao, Z., Robb, K. A., Zhao, K. & Denmark, S. E. Enantioselective, Lewis base-catalyzed sulfenocyclization of polyenes. J. Am. Chem. Soc. 140, 3569–3573 (2018).
Berkessel, A., Adrio, J. A., Hüttenhain, D. & Neudörfl, J. M. Unveiling the “booster effect” of fluorinated alcohol solvents: aggregation-induced conformational changes and cooperatively enhanced H-bonding. J. Am. Chem. Soc. 128, 8421–8426 (2006).
Tian, Y., Xu, X., Zhang, L. & Qu, J. Tetraphenylphosphonium tetrafluoroborate/1,1,1,3,3,3-hexafluoroisopropanol (Ph4PBF4/HFIP) effecting epoxide-initiated cation-olefin polycyclizations. Org. Lett. 18, 268–271 (2016).
Colomer, I., Chamberlain, A. E. R., Haughey, M. B. & Donohoe, T. J. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 1, 0088 (2017).
Motiwala, H. F. et al. HFIP in organic synthesis. Chem. Rev. 122, 12544–12747 (2022).
Kaib, P. & List, B. Highly acidic BINOL-derived phosphoramidimidates and their application in the Brønsted acid catalyzed synthesis of α-tocopherol. Synlett 27, 156–158 (2015).
Schelwies, M., Paciello, R., Pelzer, R., Siegel, W. & Breuer, M. Palladium-catalyzed low pressure carbonylation of allylic alcohols by catalytic anhydride activation. Chem. Eur. J. 27, 9263–9266 (2021).
Singleton, D. A. & Thomas, A. A. High-precision simultaneous determination of multiple small kinetic isotope effects at natural abundance. J. Am. Chem. Soc. 117, 9357–9358 (1995).
Beno, B. R., Houk, K. N. & Singleton, D. A. Synchronous or asynchronous? An “experimental” transition state from a direct comparison of experimental and theoretical kinetic isotope effects for a Diels–Alder reaction. J. Am. Chem. Soc. 118, 9984–9985 (1996).
Nguyen, H. & Gagné, M. R. Enantioselective cascade cyclization/protodemetalation of polyenes with N3Pt2+ catalysts. ACS Catal. 4, 855–859 (2014).
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).