• Yoder, R. A. & Johnston, J. N. A case study in biomimetic total synthesis: polyolefin carbocyclizations to terpenes and steroids. Chem. Rev. 105, 4730–4756 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christianson, D. W. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 106, 3412–3442 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christianson, D. W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117, 11570–11648 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishihara, K., Nakamura, S. & Yamamoto, H. The first enantioselective biomimetic cyclization of polyprenoids. J. Am. Chem. Soc. 121, 4906–4907 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Schäfer, B. Ambrox®. Chem. Unserer Zeit 45, 374–388 (2011).

    Article 

    Google Scholar
     

  • Ungarean, C. N., Southgate, E. H. & Sarlah, D. Enantioselective polyene cyclizations. Org. Biomol. Chem. 14, 5454–5467 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eichhorn, E. & Schroeder, F. From ambergris to (−)-ambrox: chemistry meets biocatalysis for sustainable (−)-ambrox production. J. Agric. Food Chem. 71, 5042–5052 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stork, G. & Burgstahler, A. W. The stereochemistry of polyene cyclization. J. Am. Chem. Soc. 77, 5068–5077 (1955).

    Article 
    CAS 

    Google Scholar
     

  • Eschenmoser, A., Ruzicka, L., Jeger, O. & Arigoni, D. Zur Kenntnis der Triterpene. 190. Mitteilung. Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen. Helv. Chim. Acta 38, 1890–1904 (1955).

    Article 
    CAS 

    Google Scholar
     

  • Eschenmoser, A. & Arigoni, D. Revisited after 50 years: the ‘stereochemical interpretation of the biogenetic isoprene rule for the triterpenes’. Helv. Chim. Acta 88, 3011–3050 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Wendt, K. U., Poralla, K. & Schulz, G. E. Structure and function of a squalene cyclase. Science 277, 1811–1815 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wendt, K., Lenhart, A. & Schulz, G. The structure of the membrane protein squalene-hopene cyclase at 2.0 å resolution. J. Mol. Biol. 286, 175–187 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reinert, D. J., Balliano, G. & Schulz, G. E. Conversion of squalene to the pentacarbocyclic hopene. Chem. Biol. 11, 121–126 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, W. S. Nonenzymic biogenetic-like olefinic cyclizations. Acc. Chem. Res. 1, 1–8 (1968).

    Article 

    Google Scholar
     

  • Wendt, K. U., Schulz, G. E., Corey, E. J. & Liu, D. R. Enzyme Mechanisms for Polycyclic Triterpene Formation. Angew. Chem. Int. Ed. 39, 2812–2833 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ohloff, G. in Riechstoffe und Geruchssinn 209–214 (Springer, 1990).

  • Ohloff, G., Schulte‐Elte, K. H. & Müller, B. L. Formation of ambergris odorants from ambrein under simulated natural conditions. Helv. Chim. Acta 60, 2763–2766 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Ohloff, G., Winter, B. & Fehr, C. in Perfumes (eds Müller, P. M. & Lamparsky, D.) 289–296 (Springer, 1994).

  • Ohloff, G., Giersch, W., Pickenhagen, W., Furrer, A. & Frei, B. Significance of the geminal dimethyl group in the odor principle of Ambrox®. Helv. Chim. Acta 68, 2022–2029 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Escher, S., Giersch, W., Niclass, Y., Bernardinelli, G. & Ohloff, G. Configuration‐odor relationships in 5β‐ambrox. Helv. Chim. Acta 73, 1935–1947 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Ohloff, G. in Gustation and Olfaction (eds Ohloff, G. & Thomas, A. F.) 178−183 (Academic Press, 1971).

  • Rossiter, K. J. Structure−odor relationships. Chem. Rev. 96, 3201–3240 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayase, K. & Igarashi, K. Method for producing (−)-ambroxan®. JP patent JP2009/060799 (2007).

  • Breuer, M., Hörster, A. & Hauer, B. Biokatalytische herstellung von ambroxan. Int. patent WO2010/139719 (2009).

  • Breuer, M. et al. Verfahren zur biokatalytischen cyclisierung von terpenen und darin einsetzbare cyclase-mutanten. Int. patent WO2012/066059 (2010).

  • Breuer, M., Hörster, A. & Hauer, B. Biocatalytic production of ambroxan. US patent 2012/0135477 (2011).

  • Eichhorn, E., Schilling, B., Wahler, D., Fourage, L. & Locher, E. Enzymes and applications thereof. Int. patent WO2016/170099 (2015).

  • Moody, T. S., Miskelly, I. R. & Quinn, D. J. Squalene hopene cyclase and use thereof for producing ambroxan. Int. patent WO2018/157021 (2017).

  • Eichhorn, E. et al. Biocatalytic process for (−)-ambrox production using squalene hopene cyclase. Adv. Synth. Catal. 360, 2339–2351 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Eichhorn, E. & Ullmann, C. Squalene hopene cyclase (SHC) variants. Int. patent WO2021/110848 (2021).

  • Eichhorn, E., Hauer, B. & Schneider, A. SHC enzymes and enzyme variants. Int. patent WO2023/175123 (2023).

  • Barrett, A., Ma, T.-K. & Mies, T. Recent developments in polyene cyclizations and their applications in natural product synthesis. Synthesis 51, 67–82 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Felix, R. J., Munro-Leighton, C. & Gagné, M. R. Electrophilic Pt(II) complexes: precision instruments for the initiation of transformations mediated by the cation–olefin reaction. Acc. Chem. Res. 47, 2319–2331 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surendra, K. & Corey, E. J. Highly enantioselective proton-initiated polycyclization of polyenes. J. Am. Chem. Soc. 134, 11992–11994 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakakura, A., Ukai, A. & Ishihara, K. Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites. Nature 445, 900–903 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishihara, K., Ishibashi, H. & Yamamoto, H. Enantio- and diastereoselective stepwise cyclization of polyprenoids induced by chiral and achiral LBAs. A new entry to (−)-ambrox, (+)-podocarpa-8,11,13-triene diterpenoids, and (−)-tetracyclic polyprenoid of sedimentary origin. J. Am. Chem. Soc. 124, 3647–3655 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snowden, R. L. et al. Internal nucleophilic termination in biomimetic acid mediated polyene cyclizations: stereochemical and mechanistic implications. Synthesis of (±)-ambrox and its diastereoisomers. J. Org. Chem. 57, 955–960 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Tsuji, N. et al. Activation of olefins via asymmetric Brønsted acid catalysis. Science 359, 1501–1505 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, P., Tsuji, N., Ouyang, J. & List, B. Strong and confined acids catalyze asymmetric intramolecular hydroarylations of unactivated olefins with indoles. J. Am. Chem. Soc. 143, 675–680 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maji, R. et al. A catalytic asymmetric hydrolactonization. J. Am. Chem. Soc. 145, 8788–8793 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Properzi, R. et al. Catalytic enantiocontrol over a non-classical carbocation. Nat. Chem. 12, 1174–1179 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wakchaure, V. N. et al. Catalytic asymmetric cationic shifts of aliphatic hydrocarbons. Nature 625, 287–292 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaib, P. S. J., Schreyer, L., Lee, S., Properzi, R. & List, B. Extremely active organocatalysts enable a highly enantioselective addition of allyltrimethylsilane to aldehydes. Angew. Chem. Int. Ed. 55, 13200–13203 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Schreyer, L., Properzi, R. & List, B. IDPi catalysis. Angew. Chem. Int. Ed. 58, 12761–12777 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, J. K., Xiang, S. & Tan, B. Imidodiphosphorimidates (IDPis): catalyst motifs with unprecedented reactivity and selectivity. Chin. J. Chem. 41, 685–694 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arnold, A. M. et al. Enzyme-like polyene cyclizations catalyzed by dynamic, self-assembled, supramolecular fluoro alcohol-amine clusters. Nat. Commun. 14, 813 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, A. M., Pöthig, A., Drees, M. & Gulder, T. NXS, Morpholine, and HFIP: the ideal combination for biomimetic haliranium-induced polyene cyclizations. J. Am. Chem. Soc. 140, 4344–4353 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, Z., Robb, K. A., Zhao, K. & Denmark, S. E. Enantioselective, Lewis base-catalyzed sulfenocyclization of polyenes. J. Am. Chem. Soc. 140, 3569–3573 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berkessel, A., Adrio, J. A., Hüttenhain, D. & Neudörfl, J. M. Unveiling the “booster effect” of fluorinated alcohol solvents: aggregation-induced conformational changes and cooperatively enhanced H-bonding. J. Am. Chem. Soc. 128, 8421–8426 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, Y., Xu, X., Zhang, L. & Qu, J. Tetraphenylphosphonium tetrafluoroborate/1,1,1,3,3,3-hexafluoroisopropanol (Ph4PBF4/HFIP) effecting epoxide-initiated cation-olefin polycyclizations. Org. Lett. 18, 268–271 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colomer, I., Chamberlain, A. E. R., Haughey, M. B. & Donohoe, T. J. Hexafluoroisopropanol as a highly versatile solvent. Nat. Rev. Chem. 1, 0088 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Motiwala, H. F. et al. HFIP in organic synthesis. Chem. Rev. 122, 12544–12747 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaib, P. & List, B. Highly acidic BINOL-derived phosphoramidimidates and their application in the Brønsted acid catalyzed synthesis of α-tocopherol. Synlett 27, 156–158 (2015).

    Article 

    Google Scholar
     

  • Schelwies, M., Paciello, R., Pelzer, R., Siegel, W. & Breuer, M. Palladium-catalyzed low pressure carbonylation of allylic alcohols by catalytic anhydride activation. Chem. Eur. J. 27, 9263–9266 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singleton, D. A. & Thomas, A. A. High-precision simultaneous determination of multiple small kinetic isotope effects at natural abundance. J. Am. Chem. Soc. 117, 9357–9358 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Beno, B. R., Houk, K. N. & Singleton, D. A. Synchronous or asynchronous? An “experimental” transition state from a direct comparison of experimental and theoretical kinetic isotope effects for a Diels–Alder reaction. J. Am. Chem. Soc. 118, 9984–9985 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, H. & Gagné, M. R. Enantioselective cascade cyclization/protodemetalation of polyenes with N3Pt2+ catalysts. ACS Catal. 4, 855–859 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *