• Floreano, D. & Wood, R. J. Science, technology and the future of small autonomous drones. Nature 521, 460–466 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Phan, H. V. & Park, H. C. Insect-inspired, tailless, hover-capable flapping-wing robots: recent progress, challenges, and future directions. Prog. Aerosp. Sci. 111, 100573 (2019).

    Article 

    Google Scholar
     

  • Farrell Helbling, E. & Wood, R. J. A review of propulsion, power, and control architectures for insect-scale flapping-wing vehicles. Appl. Mech. Rev. 70, 010801 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Yan, M. & Ebel, T. in Titanium for Consumer Applications (eds Froes, F. et al.) 91–113 (Elsevier, 2019).

  • Zhu, X., Guo, Z. & Hou, Z. Solar-powered airplanes: a historical perspective and future challenges. Prog. Aerosp. Sci. 71, 36–53 (2014).

    Article 

    Google Scholar
     

  • Goh, C. S., Kuan, J. R., Yeo, J. H., Teo, B. S. & Danner, A. A fully solar-powered quadcopter able to achieve controlled flight out of the ground effect. Prog. Photovolt. 27, 869–878 (2019).

    Article 

    Google Scholar
     

  • Boucher, R. J. Sunrise, the world’s first solar-powered airplane. J. Aircr. 22, 840–846 (1985).

    Article 

    Google Scholar
     

  • Jafferis, N. T., Helbling, E. F., Karpelson, M. & Wood, R. J. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 570, 491–495 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032–1039 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvissalim, M. S. et al. Swarm quadrotor robots for telecommunication network coverage area expansion in disaster area. In Annual Conference of the Society of Instrument and Control Engineers (SICE) 2256–2261 (IEEE, 2012).

  • Bi, Y. C., Lan, M. L., Li, J. X., Lai, S. P. & Chen, B. A lightweight autonomous MAV for indoor search and rescue. Asian J. Control 21, 1732–1744 (2019).

    Article 

    Google Scholar
     

  • Gerdes, J. W., Gupta, S. K. & Wilkerson, S. A. A review of bird-inspired flapping wing miniature air vehicle designs. J. Mech. Robot. https://doi.org/10.1115/1.4005525 (2012).

  • De Croon, G., De Clercq, K., Ruijsink, R., Remes, B. & De Wagter, C. Design, aerodynamics, and vision-based control of the DelFly. Int. J. Micro Air Veh. 1, 71–97 (2009).

    Article 

    Google Scholar
     

  • Steltz, E., Seeman, M., Avadhanula, S. & Fearing, R. S. Power electronics design choice for piezoelectric microrobots. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems 1322–1328 (IEEE, 2007).

  • Wood, R. J. The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Rob. 24, 341–347 (2008).

    Article 

    Google Scholar
     

  • Graule, M. A. et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science 352, 978–982 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. F. et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature 575, 324–329 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. et al. Laser-assisted failure recovery for dielectric elastomer actuators in aerial robots. Sci. Robot. 8, eadf4278 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Z., Yan, X., Qi, M., Zhang, X. & Lin, L. Low-voltage electromagnetic actuators for flapping-wing micro aerial vehicles. Sens. Actuators A 265, 1–9 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zou, Y., Zhang, W. & Zhang, Z. Liftoff of an electromagnetically driven insect-inspired flapping-wing robot. IEEE Trans. Rob. 32, 1285–1289 (2016).

    Article 

    Google Scholar
     

  • James, J., Iyer, V., Chukewad, Y., Gollakota, S. & Fuller, S. B. Liftoff of a 190 mg laser-powered aerial vehicle: the lightest wireless robot to fly. In 2018 IEEE International Conference on Robotics and Automation (ICRA) 3587–3594 (IEEE, 2018).

  • Ozaki, T., Ohta, N., Jimbo, T. & Hamaguchi, K. A wireless radiofrequency-powered insect-scale flapping-wing aerial vehicle. Nat. Electron. 4, 845–852 (2021).

    Article 

    Google Scholar
     

  • Elkunchwar, N., Chandrasekaran, S., Iyer, V. & Fuller, S. B. Toward battery-free flight: duty cycled recharging of small drones. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 5234–5241 (IEEE, 2021).

  • Jefimenko, O. Electrostatic Motors: Their History, Types and Principles of Operation (Integrity Research Institute, 2010).

  • Ludois, D. C. et al. Macroscale electrostatic rotating machines and drives: a review and multiplicative gain performance strategy. IEEE J. Emerging Sel. Top. Power Electron. 10, 14–34 (2020).

  • Fan, L. S., Tai, Y. C. & Muller, R. S. IC-processed electrostatic micro-motors. Tech. Digest International Electron Devices Meeting 666–669 (IEEE, 1988).

  • Livermore, C. et al. A high-power MEMS electric induction motor. J. Microelectromech. Syst. 13, 465–471 (2004).

    Article 

    Google Scholar
     

  • Yasseen, A. A., Mitchell, J. N., Klemic, J. F., Smith, D. A. & Mehregany, M. A rotary electrostatic micromotor 1/spl times/8 optical switch. IEEE J. Sel. Top. Quantum Electron. 5, 26–32 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, S., Kim, D., Bryant, M. D. & Ling, F. F. A micro corona motor. Sens. Actuators A 118, 226–232 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Leng, J. et al. Design and analysis of a corona motor with a novel multi-stage structure. J. Electrostat. 109, 103538 (2021).

    Article 

    Google Scholar
     

  • Chang, J.-S., Lawless, P. A. & Yamamoto, T. Corona discharge processes. IEEE Trans. Plasma Sci. 19, 1152–1166 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Deng, S., Percin, M. & van Oudheusden, B. Aerodynamic characterization of ‘DelFly Micro’ in forward flight configuration by force measurements and flow field visualization. Procedia Eng. 99, 925–929 (2015).

    Article 

    Google Scholar
     

  • Park, S., Drew, D. S., Follmer, S. & Rivas-Davila, J. Lightweight high voltage generator for untethered electroadhesive perching of micro air vehicles. IEEE Robot. Autom. Lett. 5, 4485–4492 (2020).

    Article 

    Google Scholar
     

  • Ravi, V. & Lakshminarasamma, N. Steady state voltage gain of flyback converters for high voltage low power applications. In 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) 1–6 (IEEE, 2016).

  • Kewei, H., Jie, L., Xiaolin, H. & Ningjun, F. Analysis and simulation of the influence of transformer parasitics to low power high voltage output flyback converter. In 2008 IEEE International Symposium on Industrial Electronics 305–310 (IEEE, 2008).

  • Zhiguo, Z. & Lin, Z. Analysis and design of isolated flyback voltage-multiplier converter for low-voltage input and high-voltage output applications. IET Power Electron. 6, 1100–1110 (2013).

    Article 

    Google Scholar
     

  • Dall’Asta, M. S., Fuerback, V. B. & Lazzarin, T. B. DCM forward-flyback converter integrated with a 5-order Cockcroft–Walton voltage multiplier: a steady-state and resonant current analysis. In 2017 Brazilian Power Electronics Conference (COBEP) 1–6 (IEEE, 2017).

  • Serrano-Vargas, J. A., Oliver, J. A. & Alou, P. Forward–flyback converter with Cockcroft–Walton voltage multiplier in DCM: steady-state analysis considering the parasitic capacitances to achieve the optimal valley-switching operation with 95.11% efficiency at 3 kV/1.5 W. IEEE J. Emerg. Sel. Top. Power Electron. 10, 2351–2361 (2022).

    Article 

    Google Scholar
     

  • Yan, X., Qi, M. & Lin, L. Self-lifting artificial insect wings via electrostatic flapping actuators. In 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 22–25 (IEEE, 2015).

  • Drew, D. S. & Pister, K. S. J. First takeoff of a flying microrobot with no moving parts. In 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS) 1–5 (IEEE, 2017).

  • Chen, N. et al. A self-rotating, single-actuated UAV with extended sensor field of view for autonomous navigation. Sci. Robot. 8, eade4538 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Johnson, K. et al. Toward sub-gram helicopters: designing a miniaturized flybar for passive stability. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2701–2708 (IEEE, 2023).

  • Quan, Q. Introduction to Multicopter Design and Control (Springer 2017).

  • Shastry, A. K., Kothari, M. & Abhishek, A. Generalized flight dynamic model of quadrotor using hybrid blade element momentum theory. J. Aircr. 55, 2162–2168 (2018).

    Article 

    Google Scholar
     

  • Xiao, K., Meng, Y., Dai, X., Zhang, H. & Quan, Q. A lifting wing fixed on multirotor UAVs for long flight ranges. In 2021 International Conference on Unmanned Aircraft Systems (ICUAS) 1605−1610 (IEEE, 2021).

  • Harrington, A. M. Optimal Propulsion System Design for A Micro Quad Rotor (Univ. Maryland, 2011).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *