Anderson, S. N. et al. The zygotic transition is initiated in unicellular plant zygotes with asymmetric activation of parental genomes. Dev. Cell 43, 349–358 (2017).
Autran, D. et al. Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145, 707–719 (2011).
Nodine, M. D. & Bartel, D. P. Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 482, 94–97 (2012).
Vielle-Calzada, J.-P., Baskar, R. & Grossniklaus, U. Delayed activation of the paternal genome during seed development. Nature 404, 91–94 (2000).
Weijers, D., Geldner, N., Offringa, R. & Jürgens, G. Early paternal gene activity in Arabidopsis. Nature 414, 709–710 (2001).
Zhao, P. et al. Two-step maternal-to-zygotic transition with two-phase parental genome contributions. Dev. Cell 49, 882–893 (2019).
Zhao, P., Zhou, X., Zheng, Y., Ren, Y. & Sun, M. X. Equal parental contribution to the transcriptome is not equal control of embryogenesis. Nat. Plants 6, 1354–1364 (2020).
Dresselhaus, T., Sprunck, S. & Wessel, G. M. Fertilization mechanisms in flowering plants. Curr. Biol. 26, R125–R139 (2016).
Luo, A., Shi, C., Zhang, L. & Sun, M. X. The expression and roles of parent-of-origin genes in early embryogenesis of angiosperms. Front. Plant Sci. 5, 729 (2014).
Perlman, R. L. & Govindaraju, D. R. Archibald E. Garrod: the father of precision medicine. Genet. Med. 18, 1088–1089 (2016).
Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).
Tavares, R. S. et al. Evaluation of human sperm chromatin status after selection using a modified Diff-Quik stain indicates embryo quality and pregnancy outcomes following in vitro fertilization. Andrology 1, 830–837 (2013).
Lasiene, K. et al. Evaluation of morphological criteria of sperm quality before in vitro fertilization and intracytoplasmic sperm injection. Pol. J. Vet. Sci. 16, 773–785 (2013).
Raad, G. et al. Differential impact of four sperm preparation techniques on sperm motility, morphology, DNA fragmentation, acrosome status, oxidative stress, and mitochondrial activity: a prospective study. Andrology 9, 1549–1559 (2021).
Yu, X. et al. Fertilized egg cells secrete endopeptidases to avoid polytubey. Nature 592, 433–437 (2021).
Bayer, M. et al. Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323, 1485–1488 (2009).
Huang, X. & Sun, M. X. H3K27 methylation regulates the fate of two cell lineages in male gametophytes. Plant Cell 34, 2989–3005 (2022).
Borg, M. et al. The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23, 534–549 (2011).
Wang, L., Ko, E. E., Tran, J. & Qiao, H. TREE1-EIN3-mediated transcriptional repression inhibits shoot growth in response to ethylene. Proc. Natl Acad. Sci. USA 117, 29178–29189 (2020).
Garcıa-Aguilar, M. & Gillmor, C. S. Zygotic genome activation and imprinting parent-of-origin gene regulation in plant embryogenesis. Curr. Opin. Plant Biol. 27, 29–35 (2015).
Costa, L. M. et al. Central cell-derived peptides regulate early embryo patterning in flowering plants. Science 344, 168–172 (2014).
Wang, W. et al. EGG CELL 1 contributes to egg-cell-dependent preferential fertilization in Arabidopsis. Nat. Plants 10, 268–282 (2024).
Zhou, W. et al. A Jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177, 942–956 (2019).
Farmer, E. E., Caldelari, D., Pearce, C., Walker-Simmons, M. K. & Ryan, C. A. Diethyldithiocarbamic acid inhibits the octadecanoid signaling pathway for the wound induction of proteinase inhibitors in tomato leaves. Plant Physiol. 106, 337–342 (1994).
Stintzi, A. & Browse, J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl Acad. Sci. USA 97, 10625–10630 (2000).
Ren, C. et al. A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by Jasmonate in Arabidopsis. Plant Physiol. 151, 1412–1420 (2009).
Haecker, A. et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131, 657–668 (2004).
Sarkar, A. K. et al. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811–814 (2007).
Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153 (2003).
Rademacher, E. H. et al. Different auxin response machineries control distinct cell fates in the early plant embryo. Dev. Cell 22, 211–222 (2012).
Koszegi, D. et al. Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J. 67, 280–291 (2011).
Sun, Y. et al. Plant egg cell fate determination depends on its exact position in female gametophyte. Proc. Natl Acad. Sci. USA 118, e2017488118 (2021).
Crawford, B. C. W. et al. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347, 655–659 (2015).
Dewitte, W. et al. Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc. Natl Acad. Sci. USA 104, 14537–14542 (2007).
Dou, L., He, K., Peng, J., Wang, X. & Mao, T. The E3 ligase MREL57 modulates microtubule stability and stomatal closure in response to ABA. Nat. Commun. 12, 2181 (2021).
Xu, J. et al. A molecular framework for plant regeneration. Science 311, 385–388 (2006).
Sugimoto, K., Jiao, Y. & Meyerowitz, E. M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev. Cell 18, 463–471 (2010).
Ng, D. W.-K., Chandrasekharan, M. B. & Hall, T. C. The 5′ UTR negatively regulates quantitative and spatial expression from the ABI3 promoter. Plant Mol. Biol. 54, 25–38 (2004).
Sprunck, S. et al. Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338, 1093–1097 (2012).
Siklenka, K. et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350, aab2006 (2015).
Rando, O. J. & Simmons, R. A. I’m eating for two: parental dietary effects on offspring metabolism. Cell 161, 93–105 (2015).
Zhao, P., Shi, C., Wang, L. & Sun, M. X. The parental contributions to early plant embryogenesis and the concept of maternal-to-zygotic transition in plants. Curr. Opin. Plant Biol. 65, 102144 (2022).
Del Toro-De Leon, G., Garcia-Aguilar, M. & Gillmor, C. S. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis. Nature 514, 624–627 (2014).
Du, Y. et al. Spatially expressed WIP genes control Arabidopsis embryonic root development. Nat. Plants 8, 635–645 (2022).
Yan, L. et al. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol. Plant 8, 1820–1823 (2015).
Liu, Y. et al. Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryogenesis. Proc. Natl Acad. Sci. USA 112, 12432–12437 (2015).
Zhou, X., Shi, C., Zhao, P. & Sun, M. Isolation of living apical and basal cell lineages of early proembryos for transcriptome analysis. Plant Reprod. 32, 105–111 (2019).
Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W. & Chua, N. H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646 (2006).