• Zickler, D. & Kleckner, N. Meiosis: dances between homologs. Annu. Rev. Genet. 57, 1–63 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zickler, D. & Kleckner, N. The leptotene-zygotene transition of meiosis. Annu. Rev. Genet. 32, 619–697 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bennett, M. D. The time and duration of meiosis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 277, 201–226 (1977).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Q., Trelles-Sticken, E., Scherthan, H. & Loidl, J. Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase. J. Cell Biol. 141, 21–29 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, D.-Q., Yamamoto, A., Haraguchi, T. & Hiraoka, Y. Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev. Cell 6, 329–341 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shibuya, H., Morimoto, A. & Watanabe, Y. The dissection of meiotic chromosome movement in mice using an in vivo electroporation technique. PLoS Genet. 10, e1004821 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chacón, M. R., Delivani, P. & Tolić, I. M. Meiotic nuclear oscillations are necessary to avoid excessive chromosome associations. Cell Rep. 17, 1632–1645 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Link, J. & Jantsch, V. Meiotic chromosomes in motion: a perspective from Mus musculus and Caenorhabditis elegans. Chromosoma 128, 317–330 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, J., Jin, H., Koch, B. A. & Yu, H.-G. Mps2 links Csm4 and Mps3 to form a telomere-associated LINC complex in budding yeast. Life Sci. Alliance 3, e202000824 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C.-Y. et al. Extranuclear structural components that mediate dynamic chromosome movements in yeast meiosis. Curr. Biol. 30, 1207–1216.e4 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nozaki, T., Chang, F., Weiner, B. & Kleckner, N. High temporal resolution 3D live-cell imaging of budding yeast meiosis defines discontinuous actin/telomere-mediated chromosome motion, correlated nuclear envelope deformation and actin filament dynamics. Front. Cell Dev. Biol. 9, 3001 (2021).

    Article 

    Google Scholar
     

  • Koszul, R., Kim, K. P., Prentiss, M., Kleckner, N. & Kameoka, S. Meiotic chromosomes move by linkage to dynamic actin cables with transduction of force through the nuclear envelope. Cell 133, 1188–1201 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scherthan, H. et al. Chromosome mobility during meiotic prophase in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 104, 16934–16939 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Storlazzi, A. et al. Recombination proteins mediate meiotic spatial chromosome organization and pairing. Cell 141, 94–106 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter, N. Meiotic recombination: the essence of heredity. Cold Spring Harb. Perspect. Biol. 7, a016618 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubois, E. et al. Building bridges to move recombination complexes. Proc. Natl Acad. Sci. USA 116, 12400–12409 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lake, C. M. & Hawley, R. S. Synaptonemal complex. Curr. Biol. 31, R225–R227 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henderson, K. A. & Keeney, S. Synaptonemal complex formation: where does it start? Bioessays 27, 995–998 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bishop, D. K. & Zickler, D. Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117, 9–15 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L., Espagne, E., de Muyt, A., Zickler, D. & Kleckner, N. E. Interference-mediated synaptonemal complex formation with embedded crossover designation. Proc. Natl Acad. Sci. USA 111, E5059–E5068 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, M., Fujita, Y. & Shinohara, A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair 134, 103613 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shinohara, M., Sakai, K., Shinohara, A. & Bishop, D. K. Crossover interference in Saccharomyces cerevisiae requires a TID1/RDH54- and DMC1-dependent pathway. Genetics 163, 1273–1286 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shinohara, A., Gasior, S., Ogawa, T., Kleckner, N. & Bishop, D. K. Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 2, 615–629 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sym, M., Engebrecht, J. A. & Roeder, G. S. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365–378 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, M. S., Grubb, J., Zhang, A., Rust, M. J. & Bishop, D. K. Small Rad51 and Dmc1 complexes often co-occupy both ends of a meiotic DNA double strand break. PLoS Genet. 11, e1005653 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Börner, G. V., Kleckner, N. & Hunter, N. Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Fung, J. C., Rockmill, B., Odell, M. & Roeder, G. S. Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes. Cell 116, 795–802 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, K. P. et al. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143, 924–937 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borde, V., Goldman, A. S. & Lichten, M. Direct coupling between meiotic DNA replication and recombination initiation. Science 290, 806–809 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pratto, F. et al. Meiotic recombination mirrors patterns of germline replication in mice and humans. Cell 184, 4251–4267.e20 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wanat, J. J. et al. Csm4, in collaboration with Ndj1, mediates telomere-led chromosome dynamics and recombination during yeast meiosis. PLoS Genet. 4, e1000188 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, W. et al. Regulated proteolysis of MutSγ controls meiotic crossing over. Mol. Cell 78, 168–183.e5 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldman, A. S. & Lichten, M. Restriction of ectopic recombination by interhomolog interactions during Saccharomyces cerevisiae meiosis. Proc. Natl Acad. Sci. USA 97, 9537–9542 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, M. et al. Human Condensin I and II drive extensive ATP-dependent compaction of nucleosome-bound DNA. Mol. Cell 79, 99–114.e9 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strom, A. R. et al. Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity. Cell 187, 5282–5297.e20 (2024).

  • Tang, M. et al. Establishment of dsDNA-dsDNA interactions by the condensin complex. Mol. Cell 83, 3787–3800.e9 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, M. A., Weiner, B., Chu, L., Lim, G. & Kleckner, N. E. Crossover interference mediates multiscale patterning along meiotic chromosomes. Preprint at bioRxiv https://doi.org/10.1101/2024.01.28.577645 (2024).

  • de Boer, E., Stam, P., Dietrich, A. J. J., Pastink, A. & Heyting, C. Two levels of interference in mouse meiotic recombination. Proc. Natl Acad. Sci. USA 103, 9607–9612 (2006).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yadav, V. K. & Claeys Bouuaert, C. Mechanism and control of meiotic DNA double-strand break formation in S. cerevisiae. Front. Cell Dev. Biol. 9, 642737 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, L. K. & Stack, S. M. Nodules associated with axial cores and synaptonemal complexes during zygotene in Psilotum nudum. Chromosoma 97, 96–100 (1988).

    Article 

    Google Scholar
     

  • Koornneef, L. et al. Chromosome pairing through tensioned DNA tethers revealed by BRCA2 meiotic domain deletion. Preprint at bioRxiv https://doi.org/10.1101/2023.10.06.561239 (2023).

  • Holm, P. B. Three-dimensional reconstruction of chromosome pairing during the zygotene stage of meiosis in Lilium longiflorum (Thunb.). Carlsberg Res. Commun. 42, 103 (1977).

    Article 

    Google Scholar
     

  • Kezer, J., Sessions, S. K. & León, P. The meiotic structure and behavior of the strongly heteromorphic X/Y sex chromosomes of neotropical plethodontid salamanders of the genus Oedipina. Chromosoma 98, 433–442 (1989).

    Article 

    Google Scholar
     

  • Zickler, D. Development of the synaptonemal complex and the ‘recombination nodules’ during meiotic prophase in the seven bivalents of the fungus Sordaria macrospora Auersw. Chromosoma 61, 289–316 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L., Liang, Z., Hutchinson, J. & Kleckner, N. Crossover patterning by the beam-film model: analysis and implications. PLoS Genet. 10, e1004042 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lau, I. F. et al. Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol. Microbiol. 49, 731–743 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J. Biol. Methods 1, e10 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, F. Low SNR Computational Pattern Detection Applied to Multi-spectral 3D Molecular Dynamics. PhD thesis, Harvard Univ. https://dash.harvard.edu/handle/1/42015127 (2018).

  • Tinevez, J.-Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Killick, R. & Eckley, I. A. Changepoint: an R package for changepoint analysis. J. Stat. Softw. 58, 1–19 (2014).

    Article 

    Google Scholar
     

  • Miné-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nat. Cell Biol. 14, 510–517 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Hunter, N. & Kleckner, N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106, 59–70 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conrad, M. N. et al. Rapid telomere movement in meiotic prophase is promoted by NDJ1, MPS3, and CSM4 and is modulated by recombination. Cell 133, 1175–1187 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *