Categories: NATURE

Permafrost slows Arctic riverbank erosion


  • Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rowland, J. et al. Arctic landscapes in transition: responses to thawing permafrost. Eos 91, 229–230 (2010).

    ADS 

    Google Scholar
     

  • Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55–67 (2022).

    ADS 

    Google Scholar
     

  • Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dyn. 5, 711–730 (2017).

    ADS 

    Google Scholar
     

  • Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. & Bopp, L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12, 169 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851 (2022).

    ADS 

    Google Scholar
     

  • Syvitski, J. et al. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 3, 179–196 (2022).

    ADS 

    Google Scholar
     

  • Post, E. et al. The polar regions in a 2°C warmer world. Sci. Adv. 5, eaaw9883 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).

    ADS 

    Google Scholar
     

  • Rowland, J. C. et al. Scale-dependent influence of permafrost on riverbank erosion rates. J. Geophys. Res. Earth Surf. 128, e2023JF007101 (2023).

    ADS 

    Google Scholar
     

  • Piliouras, A., Lauzon, R. & Rowland, J. C. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. J. Geophys. Res. Earth Surf. 126, e2020JF005706 (2021).

    ADS 

    Google Scholar
     

  • Ielpi, A., Lapôtre, M. G., Finotello, A. & Roy-Léveillée, P. Large sinuous rivers are slowing down in a warming Arctic. Nat. Clim. Change 13, 375–381 (2023).

    ADS 

    Google Scholar
     

  • Kanevskiy, M. et al. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska. Geomorphology 253, 370–384 (2016).

    ADS 

    Google Scholar
     

  • Douglas, M. M., Dunne, K. B. & Lamb, M. P. Sediment entrainment and slump blocks limit permafrost riverbank erosion. Geophys. Res. Lett. 50, e2023GL102974 (2023).

    ADS 

    Google Scholar
     

  • Phillips, C. B. et al. Threshold constraints on the size, shape and stability of alluvial rivers. Nat. Rev. Earth Environ. 3, 406–419 (2022).

    ADS 

    Google Scholar
     

  • Douglas, M. M. et al. Organic carbon burial by river meandering partially offsets bank erosion carbon fluxes in a discontinuous permafrost floodplain. Earth Surf. Dyn. 10, 421–435 (2022).

    ADS 

    Google Scholar
     

  • Striegl, R. G., Dornblaser, M. M., Aiken, G. R., Wickland, K. P. & Raymond, P. A. et al. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resourc. Res. 43, W02411 (2007).

    ADS 

    Google Scholar
     

  • Teufel, B. & Sushama, L. Abrupt changes across the Arctic permafrost region endanger northern development. Nat. Clim. Change 9, 858–862 (2019).

    ADS 

    Google Scholar
     

  • Chadburn, S. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7, 340–344 (2017).

    ADS 

    Google Scholar
     

  • Langhorst, T. & Pavelsky, T. Global observations of riverbank erosion and accretion from Landsat imagery. J. Geophys. Res. Earth Surf. 128, e2022JF006774 (2023).

    ADS 

    Google Scholar
     

  • Chassiot, L., Lajeunesse, P. & Bernier, J.-F. Riverbank erosion in cold environments: review and outlook. Earth-Sci. Rev. 207, 103231 (2020).


    Google Scholar
     

  • Constantine, C. R., Dunne, T. & Hanson, G. J. Examining the physical meaning of the bank erosion coefficient used in meander migration modeling. Geomorphology 106, 242–252 (2009).

    ADS 

    Google Scholar
     

  • Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Sylvester, Z., Durkin, P. & Covault, J. A. High curvatures drive river meandering. Geology 47, 263–266 (2019).

    ADS 

    Google Scholar
     

  • Feng, D. et al. Recent changes to Arctic river discharge. Nat. Commun. 12, 6917 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costard, F. et al. Impact of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia. Geophys. Res. Lett. 34, L14501 (2007).

    ADS 

    Google Scholar
     

  • Costard, F., Dupeyrat, L., Gautier, E. & Carey-Gailhardis, E. Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena River (central Siberia). Earth Surf. Process. Landf. 28, 1349–1359 (2003).

    ADS 

    Google Scholar
     

  • Scott, K. M. Effects of permafrost on stream channel behavior in Arctic Alaska. Professional Paper 1068. United States Geological Survey (1978).

  • Rowland, J. C. et al. A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery. Remote Sens. Environ. 184, 212–228 (2016).

    ADS 

    Google Scholar
     

  • Langhorst, T. & Pavelsky, T. M. Global observations of riverbank erosion and accretion from Landsat imagery. J. Geophys. Res. Earth Surf. 128, e2022JF006774 (2023).

    ADS 

    Google Scholar
     

  • Leprince, S., Barbot, S., Ayoub, F. & Avouac, J.-P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 45, 1529–1558 (2007).

    ADS 

    Google Scholar
     

  • Pastick, N. J. et al. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions. Remote Sens. Environ. 168, 301–315 (2015).

    ADS 

    Google Scholar
     

  • Douglas, M. M. et al. Permafrost formation in a meandering river floodplain. AGU Adv. 5, e2024AV001175 (2024).

  • Finnegan, N. J. & Dietrich, W. E. Episodic bedrock strath terrace formation due to meander migration and cutoff. Geology 39, 143–146 (2011).

    ADS 

    Google Scholar
     

  • Douglas, M. M., Miller, K. L., Schmeer, M. N. & Lamb, M. P. Ablation-limited erosion rates of permafrost riverbanks. J. Geophys. Res. Earth Surf. 128, e2023JF007098 (2023).

    ADS 

    Google Scholar
     

  • Parker, G. Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. J. Fluid Mech. 89, 127–146 (1978).

    ADS 

    Google Scholar
     

  • Dunne, K. B. & Jerolmack, D. J. What sets river width? Sci. Adv. 6, eabc1505 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Partheniades, E. Erosion and deposition of cohesive soils. J. Hydraul. Div. 91, 105–139 (1965).


    Google Scholar
     

  • Howard, A. D. & Knutson, T. R. Sufficient conditions for river meandering: a simulation approach. Water Resour. Res. 20, 1659–1667 (1984).

    ADS 

    Google Scholar
     

  • Furbish, D. J. River-bend curvature and migration: how are they related? Geology 16, 752–755 (1988).

    ADS 

    Google Scholar
     

  • Vanoni, V. A. & Brooks, N. H. Laboratory Studies of the Roughness and Suspended Load of Alluvial Streams (California Institute of Technology Sedimentation Laboratory, 1957).

  • Kean, J. W. & Smith, J. D. in Riparian Vegetation and Fluvial Geomorphology Vol. 8 (eds Bennett, S. J. & Simon, A.) 237–252 (American Geophysical Union, 2004).

  • Li, T., Venditti, J. G., Rennie, C. D. & Nelson, P. A. Bed and bank stress partitioning in bedrock rivers. J. Geophys. Res. Earth Surf. 127, e2021JF006360 (2022).

    ADS 

    Google Scholar
     

  • Ferguson, R. I., Hardy, R. J. & Hodge, R. A. Flow resistance and hydraulic geometry in bedrock rivers with multiple roughness length scales. Earth Surf. Process. Landf. 44, 2437–2449 (2019).

    ADS 

    Google Scholar
     

  • Douglas, M. M. & Lamb, M. P. A model for thaw and erosion of permafrost riverbanks. J. Geophys. Res. Earth Surf. 129, e2023JF007452 (2024).

    ADS 

    Google Scholar
     

  • Leprince, S. Monitoring Earth Surface Dynamics With Optical Imagery. PhD thesis, California Institute of Technology (2008).

  • Altena, B. & Leinss, S. Improved surface displacement estimation through stacking cross-correlation spectra from multi-channel imagery. Sci. Remote Sens. 6, 100070 (2022).


    Google Scholar
     

  • Parker, G. et al. A new framework for modeling the migration of meandering rivers. Earth Surf. Process. Landf. 36, 70–86 (2011).

    ADS 

    Google Scholar
     

  • Ikeda, S., Parker, G. & Sawai, K. Bend theory of river meanders. Part 1. Linear development. J. Fluid Mech. 112, 363–377 (1981).

    ADS 

    Google Scholar
     

  • Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    ADS 
    CAS 

    Google Scholar
     

  • Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Keller, C. B. Chron.jl: a Bayesian framework for integrated eruption age and age-depth modelling. OSF (Open Science Framework) https://doi.org/10.17605/OSF.IO/TQX3F (2018).

  • Schoene, B., Eddy, M. P., Keller, C. B. & Samperton, K. M. An evaluation of Deccan Traps eruption rates using geochronologic data. Geochronology 3, 181–198 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. A Bayesian framework for subsidence modeling in sedimentary basins: a case study of the Tonian Akademikerbreen Group of Svalbard, Norway. Earth Planet. Sci. Lett. 620, 118317 (2023).

    CAS 

    Google Scholar
     

  • Fisk, H. N. Geological Investigation of the Alluvial Valley of the Lower Mississippi River (U.S. Army Corps of Engineers, 1944).

  • Leopold, L. B. & Wolman, M. G. River meanders. Geol. Soc. Am. Bull. 71, 769–793 (1960).

    ADS 

    Google Scholar
     

  • Hickin, E. J. & Nanson, G. C. The character of channel migration on the Beatton River, northeast British Columbia, Canada. Geol. Soc. Am. Bull. 86, 487–494 (1975).

    ADS 

    Google Scholar
     

  • Dietrich, W. E., Smith, J. D. & Dunne, T. Flow and sediment transport in a sand bedded meander. J. Geol. 87, 305–315 (1979).

    ADS 

    Google Scholar
     

  • Hooke, R. L. B. Distribution of sediment transport and shear stress in a meander bend. J. Geol. 83, 543–565 (1975).

    ADS 

    Google Scholar
     

  • Donovan, M., Belmont, P. & Sylvester, Z. Evaluating the relationship between meander-bend curvature, sediment supply, and migration rates. J. Geophys. Res. Earth Surf. 126, e2020JF006058 (2021).

    ADS 

    Google Scholar
     

  • Bagnold, R. A. Some Aspects of the Shape of River Meanders (US Government Printing Office, 1960).

  • Eke, E., Parker, G. & Shimizu, Y. Numerical modeling of erosional and depositional bank processes in migrating river bends with self-formed width: morphodynamics of bar push and bank pull. J. Geophys. Res. Earth Surf. 119, 1455–1483 (2014).

    ADS 

    Google Scholar
     

  • Nicoll, T. J. & Hickin, E. J. Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology 116, 37–47 (2010).

    ADS 

    Google Scholar
     

  • Hudson, P. F. & Kesel, R. H. Channel migration and meander-bend curvature in the lower Mississippi River prior to major human modification. Geology 28, 531–534 (2000).

    ADS 

    Google Scholar
     

  • Finotello, A. et al. Field migration rates of tidal meanders recapitulate fluvial morphodynamics. Proc. Natl Acad. Sci. 115, 1463–1468 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hooke, J. River meander behaviour and instability: a framework for analysis. Trans. Inst. Br. Geogr. 28, 238–253 (2003).


    Google Scholar
     

  • Douglas, M. et al. Geomorphic mapping and permafrost occurrence on the Koyukuk River floodplain near Huslia, Alaska (ESS-DIVE dataset) (2023).

  • Geyman, E., Avouac, J.-P., Douglas, M. & Lamb, M. Resolving the spatial and seasonal pattern of riverbank erosion on the Koyukuk River, Alaska, 2016–2022. Arctic Data Center (2024).

  • Beltaos, S., Carter, T., Rowsell, R. & DePalma, S. G. Erosion potential of dynamic ice breakup in Lower Athabasca River. Part I: field measurements and initial quantification. Cold Reg. Sci. Technol. 149, 16–28 (2018).


    Google Scholar
     

  • Vandermause, R., Harvey, M., Zevenbergen, L. & Ettema, R. River-ice effects on bank erosion along the middle segment of the Susitna river, Alaska. Cold Reg. Sci. Technol. 185, 103239 (2021).


    Google Scholar
     

  • Milburn, D. & Prowse, T. D. The effect of river-ice break-up on suspended sediment and select trace-element fluxes: paper presented at the 10th Northern Res. Basin Symposium (Svalbard, Norway – 28 Aug./3 Sept. 1994). Hydrol. Res. 27, 69–84 (1996).

    CAS 

    Google Scholar
     

  • Ettema, R. Review of alluvial-channel responses to river ice. J. Cold Reg. Eng. 16, 191–217 (2002).


    Google Scholar
     

  • Costard, F., Gautier, E., Fedorov, A., Konstantinov, P. & Dupeyrat, L. An assessment of the erosion potential of the fluvial thermal process during ice breakups of the Lena River (Siberia). Permafr. Periglac. Process. 25, 162–171 (2014).


    Google Scholar
     

  • Lininger, K., Wohl, E., Rose, J. & Leisz, S. Significant floodplain soil organic carbon storage along a large high-latitude river and its tributaries. Geophys. Res. Lett. 46, 2121–2129 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Lunardini, V. J., Zisson, J. R. & Yen, Y. C. Experimental Determination of Heat Transfer Coefficients in Water Flowing over a Horizontal Ice Sheet (US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1986).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Mumps is rising in some nations — but a fresh dose of vaccine might help

    A third dose of the mumps vaccine, if given early during an outbreak, might reduce…

    10 hours ago

    Here’s a bunch of bananas shit Trump said today about breaking up Google

    Yeah, look, Google’s got a lot of power. They’re very bad to me. Very, very…

    10 hours ago

    Efficient and Eco-Friendly Boat Paint & Antifouling Removal with Laser Cleaning

    Maintaining the exterior of a boat, especially removing old paint and antifouling layers, is essential…

    11 hours ago

    The Most Romantic Place I’ve Never Been

    I couldn’t describe, exactly, the layout of the trailer my family moved into when we…

    12 hours ago

    Should You Keep or Sell Your House? Use This Tool

    Should you sell your house or keep it as a rental property in 2024? What…

    12 hours ago

    First breathtaking images from Euclid telescope’s map of the universe

    The interaction between two distant galaxies, captured by EuclidESA A mosaic of images from the…

    12 hours ago