• Schindler, D. E. & Smits, A. P. Subsidies of aquatic resources in terrestrial ecosystems. Ecosystems 20, 78–93 (2017).

    Article 

    Google Scholar
     

  • Subalusky, A. L., Dutton, C. L., Rosi, E. J. & Post, D. M. Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. Proc. Natl Acad. Sci. USA 114, 7647–7652 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blais, J. M. et al. Biologically mediated transport of contaminants to aquatic systems. Environ. Sci. Technol. 41, 1075–1084 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Walters, D. M., Kraus, J. M. & Mills, M. A. in Contaminants and Ecological Subsidies: The Land-Water Interface (eds Kraus, J. M. et al.) 1–14 (Springer, 2020); https://doi.org/10.1007/978-3-030-49480-3_1.

  • Gende, S. M., Edwards, R. T., Willson, M. F. & Wipfli, M. S. Pacific salmon in aquatic and terrestrial ecosystems. BioScience 52, 917 (2002).

    Article 

    Google Scholar
     

  • Krümmel, E. M. et al. Delivery of pollutants by spawning salmon. Nature 425, 255–256 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Christensen, J. R., MacDuffee, M., Macdonald, R. W., Whiticar, M. & Ross, P. S. Persistent organic pollutants in British Columbia grizzly bears: consequence of divergent diets. Environ. Sci. Technol. 39, 6952–6960 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruggerone, G. T. & Irvine, J. R. Numbers and biomass of natural- and hatchery-origin pink salmon, chum salmon, and sockeye salmon in the North Pacific Ocean, 1925–2015. Mar. Coast. Fish. 10, 152–168 (2018).

    Article 

    Google Scholar
     

  • Subalusky, A. L. & Post, D. M. Context dependency of animal resource subsidies. Biol. Rev. 94, 517–538 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furey, N. B., Armstrong, J. B., Beauchamp, D. A. & Hinch, S. G. Migratory coupling between predators and prey. Nat. Ecol. Evol. 2, 1846–1853 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Flecker, A. S. et al. Migratory fishes as material and process subsidies in riverine ecosystems. Am. Fish. Soc. Symp. 73, 559–592 (2010).


    Google Scholar
     

  • Naiman, R. J., Bilby, R. E., Schindler, D. E. & Helfield, J. M. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5, 399–417 (2002).

    Article 

    Google Scholar
     

  • Schindler, D. E. et al. Riding the crimson tide: mobile terrestrial consumers track phenological variation in spawning of an anadromous fish. Biol. Lett. 9, 20130048 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, J. C. et al. Relationships between Pacific salmon and aquatic and terrestrial ecosystems: implications for ecosystem‐based management. Ecology 101, e03060 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Schindler, D. E. et al. Pacific salmon and the ecology of coastal ecosystems. Front. Ecol. Environ. 1, 31–37 (2003).

    Article 

    Google Scholar
     

  • Janetski, D. J., Chaloner, D. T., Tiegs, S. D. & Lamberti, G. A. Pacific salmon effects on stream ecosystems: a quantitative synthesis. Oecologia 159, 583–595 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hocking, M. D. & Reynolds, J. D. Impacts of salmon on riparian plant diversity. Science 331, 1609–1612 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gresh, T., Lichatowich, J. & Schoonmaker, P. An estimation of historic and current levels of salmon production in the northeast Pacific ecosystem: evidence of a nutrient deficit in the freshwater systems of the Pacific Northwest. Fisheries 25, 15–21 (2000).

    Article 

    Google Scholar
     

  • Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28, 289–316 (1997).

    Article 

    Google Scholar
     

  • Walters, D. M., Fritz, K. M. & Otter, R. R. The dark side of subsidies: adult stream insects export organic contaminants to riparian predators. Ecol. Appl. 18, 1835–1841 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Kroeze, C. & Seitzinger, S. P. Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050: a global model. Nutr. Cycl. Agroecosyst. 52, 195–212 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Rivers as the largest source of mercury to coastal oceans worldwide. Nat. Geosci. 14, 672–677 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cadenasso, M. L., Weathers, K. C. & Pickett, S. T. A. in Food Webs at the Landscape Level (eds Polis, G. A. et al.) 263–267 (Univ. Chicago Press, 2004).

  • Satterfield, D. A., Sillett, T. S., Chapman, J. W., Altizer, S. & Marra, P. P. Seasonal insect migrations: massive, influential, and overlooked. Front. Ecol. Environ. 18, 335–344 (2020).

    Article 

    Google Scholar
     

  • Oke, K. B. et al. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 11, 4155 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruggerone, G. T. et al. From diatoms to killer whales: impacts of pink salmon on North Pacific ecosystems. Mar. Ecol. Prog. Ser. 719, 1–40 (2023).

    Article 

    Google Scholar
     

  • Hites, R. A. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ. Sci. Technol. 38, 945–956 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jallen, D. M. et al. Yukon River Salmon Stock Status and Salmon Fisheries, 2022: A Report to the Alaska Board of Fisheries, January 2023 (Alaska Department of Fish and Game, 2023).

  • Sands, T., Elison, T., Tiernan, A. & Stacey, P. 2022 Bristol Bay Salmon Season Summary (Alaska Department of Fish and Game, 2022).

  • Myers, K. W., Walker, R. V., Fowler, S. & Dahlberg, M.L. Known Ocean Ranges of Stocks of Pacific Salmon and Steelhead as Shown by Tagging Experiments, 1956–1989 (Univ. Washington, Fisheries Research Institute, 1990).

  • Johnson, S. P. & Schindler, D. E. Trophic ecology of Pacific salmon (Oncorhynchus spp.) in the ocean: a synthesis of stable isotope research. Ecol. Res. 24, 855–863 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Quinn, T. P. The Behavior and Ecology of Pacific Salmon and Trout (Univ. Washington Press, 2005).

  • Qin, Y. & Kaeriyama, M. Feeding habits and trophic levels of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean. NPAFC Bull. 6, 469–481 (2016).

    Article 

    Google Scholar
     

  • Ebel, J. D. Nutrient Cycling by Large Consumers at Individual, Population, and Ecosystem Levels. PhD thesis, Memorial University of Newfoundland (2017).

  • Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A. & Campbell, L. M. Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ. Sci. Technol. 47, 13385–13394 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Walters, D. M. et al. Trophic magnification of organic chemicals: a global synthesis. Environ. Sci. Technol. 50, 4650–4658 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, B. C. et al. Tissue residue concentrations of organohalogens and trace elements in adult Pacific salmon returning to the Fraser River, British Columbia, Canada. Environ. Toxicol. Chem. 30, 367–376 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bowerman, T. E., Pinson-Dumm, A., Peery, C. A. & Caudill, C. C. Reproductive energy expenditure and changes in body morphology for a population of Chinook salmon Oncorhynchus tshawytscha with a long distance migration. J. Fish Biol. 90, 1960–1979 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McVeigh, B. R., Healey, M. C. & Wolfe, F. Energy expenditures during spawning by chum salmon Oncorhynchus keta (Walbaum) in British Columbia. J. Fish Biol. 71, 1696–1713 (2007).

    Article 

    Google Scholar
     

  • Groot, C. & Margolis, L. Pacific Salmon Life Histories (UBC Press, 1991).

  • Holtgrieve, G. W. & Schindler, D. E. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams. Ecology 92, 373–385 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Ewald, G., Larsson, P., Linge, H., Okla, L. & Szarzi, N. Biotransport of organic pollutants to an inland Alaska lake by migrating sockeye salmon (Oncorhynchus nerka). Arctic 51, 40–47 (1998).

    Article 

    Google Scholar
     

  • Christensen, J. R., Yunker, M. B., MacDuffee, M. & Ross, P. S. Plant consumption by grizzly bears reduces biomagnification of salmon‐derived polychlorinated biphenyls, polybrominated diphenyl ethers, and organochlorine pesticides. Environ. Toxicol. Chem. 32, 995–1005 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noël, M. et al. Grizzly bear hair reveals toxic exposure to mercury through salmon consumption. Environ. Sci. Technol. 48, 7560–7567 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gerig, B. S. et al. Environmental context and contaminant biotransport by Pacific salmon interact to mediate the bioaccumulation of contaminants by stream-resident fish. J. Appl. Ecol. 55, 1846–1859 (2018).

    Article 

    Google Scholar
     

  • Gerig, B. S., Janetski, D. J., Chaloner, D. T. & Lamberti, G. A. Contaminant biotransport by Pacific salmon in the Great Lakes. Front. Ecol. Evol. 8, 199 (2020).

  • Gerig, B. S., Chaloner, D. T., Rediske, R. R., Paterson, G. & Lamberti, G. A. Pacific salmon as vectors of environmental contaminants: an experimental test confirms synoptic surveys in natural streams. Environ. Pollut. 336, 122355 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGrew, A. K. et al. Mercury in gray wolves (Canis lupus) in Alaska: increased exposure through consumption of marine prey. Sci. Total Environ. 468–469, 609–613 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hanson, M. B. et al. Endangered predators and endangered prey: seasonal diet of Southern Resident killer whales. PLoS ONE 16, e0247031 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • U.S. Fish and Wildlife Service. U.S. Fish and Wildlife Service Final Report: Bald Eagle Population Size: 2020 Update (U.S. Fish & Wildlife Service, 2020); https://www.fws.gov/media/us-fish-and-wildlife-service-final-report-bald-eagle-population-size-2020-update.

  • Alaska Department of Fish and Game. Bald Eagle Species Profile. https://www.adfg.alaska.gov/index.cfm?adfg=baldeagle.main.

  • Ackerman, J. T. et al. Avian mercury exposure and toxicological risk across western North America: a synthesis. Sci. Total Environ. 568, 749–769 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baker, M. R., Schindler, D. E., Holtgrieve, G. W. & St. Louis, V. L. Bioaccumulation and transport of contaminants: migrating sockeye salmon as vectors of mercury. Environ. Sci. Technol. 43, 8840–8846 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Twining, C. W. et al. Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity. Proc. Natl Acad. Sci. USA 113, 10920–10925 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, D. et al. Organochlorine pesticides in fish from Taihu Lake, China, and associated human health risk assessment. Ecotoxicol. Environ. Safety 98, 383–389 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foran, J. A. et al. Quantitative analysis of the benefits and risks of consuming farmed and wild salmon. J. Nutr. 135, 2639–2643 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, J. W. & Schindler, D. E. Nutrient export from freshwater ecosystems by anadromous sockeye salmon (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci. 61, 1582–1589 (2004).

    Article 

    Google Scholar
     

  • Pitman, K. J. et al. Glacier retreat creating new Pacific salmon habitat in western North America. Nat. Commun. 12, 6816 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • North Pacific Anadromous Fish Commission. NPAFC Pacific Salmonid Catch Statistics (2020); https://www.npafc.org/statistics/.

  • Ruggerone, G. T. et al. 2016 Arctic Yukon Kuskokwim Sustainable Salmon Initiative Project Product. Growth, Age & Survival of AYK Chinook Salmon (2016); https://www.aykssi.org/wp-content/uploads/Ruggerone-Connors-2016-AYK-Chinook-Growth-Survival-1334-Final-Report.pdf.

  • Larson, S. 2020 Kuskokwim River Chinook Salmon Run Reconstruction and 2021 Forecast (Alaska Department of Fish and Game, 2021); https://www.adfg.alaska.gov/FedAidPDFs/RIR.3A.2021.02.pdf.

  • Rogers, D. E. in The Gulf of Alaska: Physical Environment and Biological Resources (eds Hood, D. W. & Zimmerman, S. T.) 461–476 (National Oceanic and Atmospheric Administration, 1987).

  • Hagerman, G., Vaughn, M. & Priest, J. Annual Management Report for the 2019 Southeast Alaska/Yakutat Salmon Troll Fisheries (Alaska Department of Fish and Game. 2020); https://www.adfg.alaska.gov/FedAidPDFs/FMR20-21.pdf.

  • Ogden, A. D. et al. Canadian Commercial Catches and Escapements of Chinook and Coho Salmon Separated into Hatchery- and Wild-Origin Fish (North Pacific Anadromous Fish Commission, 2014); https://www.npafc.org/wp-content/uploads/Public-Documents/2014/1531Canada.pdf.

  • Pacific Fishery Management Council. Escapements to Inland Fisheries and Spawning Areas. Salmon Review Appendix B. Escapements to Natural Areas Only (2020); https://www.pcouncil.org/documents/2019/06/escapements-to-inland-fisheries-and-spawning-areas-salmon-review-appendix-b-excel-file-format.xlsm.

  • Kendall, N. W., Hard, J. J. & Quinn, T. P. Quantifying six decades of fishery selection for size and age at maturity in sockeye salmon. Evol. Appl. 2, 523–536 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kendall, N. W. & Quinn, T. P. Length and age trends of Chinook salmon in the Nushagak River, Alaska, related to commercial and recreational fishery selection and exploitation. Trans. Am. Fish. Soc. 140, 611–622 (2011).

    Article 

    Google Scholar
     

  • Colombo, S. M. & Mazal, X. Investigation of the nutritional composition of different types of salmon available to Canadian consumers. J. Agric. Food Res. 2, 100056 (2020).


    Google Scholar
     

  • Alaska Department of Environmental Conservation. Fish Contaminant Data. https://dec.alaska.gov/eh/vet/fish-monitoring-program/fish-tissue-mercury (2022).

  • Gibson, P. P., Mills, M. A., Kraus, J. M. & Walters, D. M. A modeling approach to compare ΣPCB concentrations between congener-specific analyses. Integr. Environ. Assess. Manage. 13, 227–232 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hayward, D., Wong, J. & Krynitsky, A. J. Polybrominated diphenyl ethers and polychlorinated biphenyls in commercially wild caught and farm-raised fish fillets in the United States. Environ. Res. 103, 46–54 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cullon, D. L. et al. Persistent organic pollutants in Chinook salmon (Oncorhynchus tshawytscha): implications for resident killer whales of British Columbia and adjacent waters. Environ. Toxicol. Chem. 28, 148 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aas, T. S., Åsgård, T. & Ytrestøyl, T. Chemical composition of whole body and fillet of slaughter sized Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) farmed in Norway in 2020. Aquac. Rep. 25, 101252 (2022).

    Article 

    Google Scholar
     

  • Eagles-Smith, C. A. et al. Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada. Sci. Total Environ. 568, 1171–1184 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stone, D. Polybrominated diphenyl ethers and polychlorinated biphenyls in different tissue types from Chinook salmon (Oncorhynchus tshawytscha). Bull. Environ. Contam. Toxicol. 76, 148–154 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batt, A. L., Wathen, J. B., Lazorchak, J. M., Olsen, A. R. & Kincaid, T. M. Statistical survey of persistent organic pollutants: risk estimations to humans and wildlife through consumption of fish from U.S. rivers. Environ. Sci. Technol. 51, 3021–3031 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hobbs, N. T. & Hooten, M. B. Bayesian Models: A Statistical Primer for Ecologists (Princeton Univ. Press, 2015).

  • Wesner, J. S. & Pomeranz, J. P. F. Choosing priors in Bayesian ecological models by simulating from the prior predictive distribution. Ecosphere 12, e03739 (2021).

  • Azad, A. M. et al. Effects of geography and species variation on selenium and mercury molar ratios in Northeast Atlantic marine fish communities. Sci. Total Environ. 652, 1482–1496 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sprague, M., Dick, J. R. & Tocher, D. R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep. 6, 21892 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montory, M., Habit, E., Fernandez, P., Grimalt, J. O. & Barra, R. PCBs and PBDEs in wild Chinook salmon (Oncorhynchus tshawytscha) in the Northern Patagonia, Chile. Chemosphere 78, 1193–1199 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, R. B. & Everhart, W. H. Concentrations of DDT in landlocked salmon (Salmo salar) at Sebago Lake, Maine. Trans. Am. Fish. Soc. 95, 160–164 (1966).

    Article 
    CAS 

    Google Scholar
     

  • Gelman, A., Simpson, D. & Betancourt, M. The prior can often only be understood in the context of the likelihood. Entropy 19, 555 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Bürkner, P.-C. Advanced Bayesian multilevel modeling with the R package brms. R J. 10, 395–411 (2018).

    Article 

    Google Scholar
     

  • Stan Development Team. RStan: the R interface to Stan. (2020).

  • Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389–402 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Dietze, M. Ecological Forecasting (Princeton Univ. Press, 2017).

  • Groemping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2007).


    Google Scholar
     

  • Groemping, U. & Matthias, L. Relaimpo: relative importance of regressors in linear models. (2021).

  • Gladyshev, M. I. et al. Benefit-risk ratio of food fish intake as the source of essential fatty acids vs. heavy metals: a case study of Siberian grayling from the Yenisei River. Food Chem. 115, 545–550 (2009).

    Article 
    CAS 

    Google Scholar
     

  • EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 10, 2985 (2012).


    Google Scholar
     

  • Wesner, J. S. et al. Data and code for ‘Continental-scale nutrient and contaminant delivery by Pacific salmon’. Zenodo https://doi.org/10.5281/zenodo.12810135 (2024).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *