Utama, M. I. B. et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys. 17, 184–188 (2021).
Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).
Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).
Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).
Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).
Das, I. et al. Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys. 17, 710–714 (2021).
Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020).
Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).
Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nat. Phys. 18, 885–892 (2022).
Yu, J. et al. Spin skyrmion gaps as signatures of strong-coupling insulators in magic-angle twisted bilayer graphene. Nat. Commun. 14, 6679 (2023).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).
Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater. 20, 488–494 (2021).
Yu, J. et al. Correlated Hofstadter spectrum and flavour phase diagram in magic-angle twisted bilayer graphene. Nat. Phys. 18, 825–831 (2022).
Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).
Choi, Y. et al. Interaction-driven band flattening and correlated phases in twisted bilayer graphene. Nat. Phys. 17, 1375–1381 (2021).
Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019).
Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).
Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 18, 633–638 (2022).
Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).
Kim, H. et al. Imaging inter-valley coherent order in magic-angle twisted trilayer graphene. Nature 623, 942–948 (2023).
Kwan, Y. H. et al. Kekulé spiral order at all nonzero integer fillings in twisted bilayer graphene. Phys. Rev. X 11, 041063 (2021).
Bultinck, N. et al. Ground state and hidden symmetry of magic-angle graphene at even integer filling. Phys. Rev. X 10, 031034 (2020).
Nuckolls, K. P. et al. Quantum textures of the many-body wavefunctions in magic-angle graphene. Nature 620, 525–532 (2023).
Kumar, A., Xie, M. & MacDonald, A. H. Lattice collective modes from a continuum model of magic-angle twisted bilayer graphene. Phys. Rev. B 104, 035119 (2021).
Fischer, A., Klebl, L., Honerkamp, C. & Kennes, D. M. Spin-fluctuation-induced pairing in twisted bilayer graphene. Phys. Rev. B 103, L041103 (2021).
Wang, Y., Kang, J. & Fernandes, R. M. Topological and nematic superconductivity mediated by ferro-SU(4) fluctuations in twisted bilayer graphene. Phys. Rev. B 103, 024506 (2021).
Morissette, E. et al. Dirac revivals drive a resonance response in twisted bilayer graphene. Nat. Phys. 19, 1156–1162 (2023).
Kozii, V., Zaletel, M. P. & Bultinck, N. Spin-triplet superconductivity from intervalley Goldstone modes in magic-angle graphene. Phys. Rev. B 106, 235157 (2022).
Dong, Z., Levitov, L. & Chubukov, A. V. Superconductivity near spin and valley orders in graphene multilayers. Phys. Rev. B 108, 134503 (2023).
Kardar, M. Statistical Physics of Fields (Cambridge Univ. Press, 2007).
Dawson, D. A. Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stat. Phys. 31, 29–85 (1983).
Khalaf, E., Bultinck, N., Vishwanath, A. & Zaletel, M. P. Soft modes in magic angle twisted bilayer graphene. Preprint at arxiv.org/abs/2009.14827 (2020).
Mehew, J. D. et al. Ultrafast Umklapp-assisted electron-phonon cooling in magic-angle twisted bilayer graphene. Sci. Adv. 10, eadj1361 (2024).
He, M. et al. Dynamically tunable moiré exciton Rydberg states in a monolayer semiconductor on twisted bilayer graphene. Nat. Mater. 23, 224–229 (2024).
Hu, Q. et al. Observation of Rydberg moiré excitons. Science 380, 1367–1372 (2023).
Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).
Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K. & Machida, T. Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Appl. Phys. Lett. 94, 082107 (2009).
Hsu, W.-T. et al. Dielectric impact on exciton binding energy and quasiparticle bandgap in monolayer WS2 and WSe2. 2D Mater. 6, 025028 (2019).
Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).
Yuan, L. et al. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures. Sci. Adv. 4, e1700324 (2018).
Chen, X., Zheng, S.-W., Wang, X.-P. & Wang, H.-Y. Ultrafast dynamics of spin relaxation in monolayer WSe2 and the WSe2/graphene heterojunction. Phys. Chem. Chem. Phys. 24, 16538–16544 (2022).
Ezgi Eroglu, Z. et al. Filling exciton trap-states in two-dimensional tungsten disulfide (WS2) and diselenide (WSe2) monolayers. Nanomaterials 11, 770 (2021).
Xie, T. et al. Optical imaging of flavor order in flat band graphene. Preprint at arxiv.org/abs/2405.08074 (2024).
Jin, C. et al. Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons. Nat. Phys. 15, 1140–1144 (2019).
Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).
Lin, J.-X. et al. Spin-orbit–driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).
Zhang, Y. et al. Enhanced superconductivity in spin–orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).
Bi, Z., Yuan, N. F. Q. & Fu, L. Designing flat bands by strain. Phys. Rev. B 100, 035448 (2019).
Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).
Hu, H., Bernevig, B. A. & Tsvelik, A. M. Kondo lattice model of magic-angle twisted-bilayer graphene: Hund’s rule, local-moment fluctuations, and low-energy effective theory. Phys. Rev. Lett. 131, 026502 (2023).
Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science (1979) 375, 774–778 (2022).
Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).
Milivojević, M., Gmitra, M., Kurpas, M., Štich, I. & Fabian, J. Proximity-induced spin-orbit coupling in phosphorene on a WSe2 monolayer. Phys. Rev. B 108, 115311 (2023).
Nolting, W. & Ramakanth, A. Quantum Theory of Magnetism (Springer, 2009).
Xie, T. Long lived isospin excitation in magic angle twisted bilayer graphene. OSF https://osf.io/8kqh3 (2024).