• Utama, M. I. B. et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist. Nat. Phys. 17, 184–188 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, I. et al. Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys. 17, 710–714 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Khalaf, E., Chatterjee, S., Bultinck, N., Zaletel, M. P. & Vishwanath, A. Charged skyrmions and topological origin of superconductivity in magic-angle graphene. Sci. Adv. 7, eabf5299 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grover, S. et al. Chern mosaic and Berry-curvature magnetism in magic-angle graphene. Nat. Phys. 18, 885–892 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yu, J. et al. Spin skyrmion gaps as signatures of strong-coupling insulators in magic-angle twisted bilayer graphene. Nat. Commun. 14, 6679 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, S., Zhang, Z., Watanabe, K., Taniguchi, T. & Andrei, E. Y. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater. 20, 488–494 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, J. et al. Correlated Hofstadter spectrum and flavour phase diagram in magic-angle twisted bilayer graphene. Nat. Phys. 18, 825–831 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Interaction-driven band flattening and correlated phases in twisted bilayer graphene. Nat. Phys. 17, 1375–1381 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Polshyn, H. et al. Large linear-in-temperature resistivity in twisted bilayer graphene. Nat. Phys. 15, 1011–1016 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 18, 633–638 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Imaging inter-valley coherent order in magic-angle twisted trilayer graphene. Nature 623, 942–948 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwan, Y. H. et al. Kekulé spiral order at all nonzero integer fillings in twisted bilayer graphene. Phys. Rev. X 11, 041063 (2021).

    CAS 

    Google Scholar
     

  • Bultinck, N. et al. Ground state and hidden symmetry of magic-angle graphene at even integer filling. Phys. Rev. X 10, 031034 (2020).

    CAS 

    Google Scholar
     

  • Nuckolls, K. P. et al. Quantum textures of the many-body wavefunctions in magic-angle graphene. Nature 620, 525–532 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, A., Xie, M. & MacDonald, A. H. Lattice collective modes from a continuum model of magic-angle twisted bilayer graphene. Phys. Rev. B 104, 035119 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fischer, A., Klebl, L., Honerkamp, C. & Kennes, D. M. Spin-fluctuation-induced pairing in twisted bilayer graphene. Phys. Rev. B 103, L041103 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y., Kang, J. & Fernandes, R. M. Topological and nematic superconductivity mediated by ferro-SU(4) fluctuations in twisted bilayer graphene. Phys. Rev. B 103, 024506 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morissette, E. et al. Dirac revivals drive a resonance response in twisted bilayer graphene. Nat. Phys. 19, 1156–1162 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kozii, V., Zaletel, M. P. & Bultinck, N. Spin-triplet superconductivity from intervalley Goldstone modes in magic-angle graphene. Phys. Rev. B 106, 235157 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dong, Z., Levitov, L. & Chubukov, A. V. Superconductivity near spin and valley orders in graphene multilayers. Phys. Rev. B 108, 134503 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kardar, M. Statistical Physics of Fields (Cambridge Univ. Press, 2007).

  • Dawson, D. A. Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stat. Phys. 31, 29–85 (1983).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Khalaf, E., Bultinck, N., Vishwanath, A. & Zaletel, M. P. Soft modes in magic angle twisted bilayer graphene. Preprint at arxiv.org/abs/2009.14827 (2020).

  • Mehew, J. D. et al. Ultrafast Umklapp-assisted electron-phonon cooling in magic-angle twisted bilayer graphene. Sci. Adv. 10, eadj1361 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, M. et al. Dynamically tunable moiré exciton Rydberg states in a monolayer semiconductor on twisted bilayer graphene. Nat. Mater. 23, 224–229 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Q. et al. Observation of Rydberg moiré excitons. Science 380, 1367–1372 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Electrode-free anodic oxidation nanolithography of low-dimensional materials. Nano Lett. 18, 8011–8015 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K. & Machida, T. Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Appl. Phys. Lett. 94, 082107 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hsu, W.-T. et al. Dielectric impact on exciton binding energy and quasiparticle bandgap in monolayer WS2 and WSe2. 2D Mater. 6, 025028 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, L. et al. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures. Sci. Adv. 4, e1700324 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X., Zheng, S.-W., Wang, X.-P. & Wang, H.-Y. Ultrafast dynamics of spin relaxation in monolayer WSe2 and the WSe2/graphene heterojunction. Phys. Chem. Chem. Phys. 24, 16538–16544 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ezgi Eroglu, Z. et al. Filling exciton trap-states in two-dimensional tungsten disulfide (WS2) and diselenide (WSe2) monolayers. Nanomaterials 11, 770 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, T. et al. Optical imaging of flavor order in flat band graphene. Preprint at arxiv.org/abs/2405.08074 (2024).

  • Jin, C. et al. Identification of spin, valley and moiré quasi-angular momentum of interlayer excitons. Nat. Phys. 15, 1140–1144 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, J.-X. et al. Spin-orbit–driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Enhanced superconductivity in spin–orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bi, Z., Yuan, N. F. Q. & Fu, L. Designing flat bands by strain. Phys. Rev. B 100, 035448 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, H., Bernevig, B. A. & Tsvelik, A. M. Kondo lattice model of magic-angle twisted-bilayer graphene: Hund’s rule, local-moment fluctuations, and low-energy effective theory. Phys. Rev. Lett. 131, 026502 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science (1979) 375, 774–778 (2022).

    CAS 

    Google Scholar
     

  • Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Milivojević, M., Gmitra, M., Kurpas, M., Štich, I. & Fabian, J. Proximity-induced spin-orbit coupling in phosphorene on a WSe2 monolayer. Phys. Rev. B 108, 115311 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Nolting, W. & Ramakanth, A. Quantum Theory of Magnetism (Springer, 2009).

  • Xie, T. Long lived isospin excitation in magic angle twisted bilayer graphene. OSF https://osf.io/8kqh3 (2024).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *