• Utke, I., Moshkalev, S. & Russell, P. Nanofabrication Using Focused Ion and Electron Beams: Principles and Applications (Oxford Univ. Press, 2012).

  • Dierolf, M. et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 467, 436–439 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Michelson, A. et al. Three-dimensional visualization of nanoparticle lattices and multimaterial frameworks. Science 376, 203–207 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kak, A. C. & Slaney, M. Principles of Computerized Tomographic Imaging Classics in Applied Mathematics Vol. 33, 203–273 (Society for Industrial and Applied Mathematics, 2001).

  • Smith, D. J. Atomic-resolution structure imaging of defects and interfaces in compound semiconductors. Prog. Cryst. Growth Charact. Mater. 66, 100498 (2020).

    CAS 

    Google Scholar
     

  • Inkson, B. J. in Materials Characterization Using Nondestructive Evaluation (NDE) Methods (eds Hübschen, G., Altpeter, I., Tschuncky R. & Hans-Georg, H.) 17–43 (Elsevier, 2016).

  • Deng, J. et al. Nanoscale X-ray imaging of circuit features without wafer etching. Phys. Rev. B 95, 104111 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Automated markerless full field hard X-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution. Appl. Phys. Lett. 100, 143107 (2012).

    ADS 

    Google Scholar
     

  • De Andrade, V. et al. Fast X-ray nanotomography with sub-10 nm resolution as a powerful imaging tool for nanotechnology and energy storage applications. Adv. Mater. 33, 2008653 (2021).


    Google Scholar
     

  • Holzner, C. et al. Zernike phase contrast in scanning microscopy with X-rays. Nat. Phys. 6, 883–887 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howells, M. R. et al. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J. Electron Spectros. Relat. Phenomena 170, 4–12 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodenburg, J. M. & Faulkner, H. M. A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett. 85, 4795–4797 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfeiffer, F. X-ray ptychography. Nat. Photon. 12, 9–17 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Guizar-Sicairos, M. & Fienup, J. R. Phase retrieval with transverse translation diversity: a nonlinear optimization approach. Opt. Express 16, 7264–7278 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • Thibault, P. & Guizar-Sicairos, M. Maximum-likelihood refinement for coherent diffractive imaging. New J. Phys. 14, 063004 (2012).

    ADS 

    Google Scholar
     

  • Odstrčil, M., Menzel, A. & Guizar-Sicairos, M. Iterative least-squares solver for generalized maximum-likelihood ptychography. Opt. Express 26, 3108–3123 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Holler, M. et al. High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 543, 402–406 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Odstrcil, M., Lebugle, M., Lachat, T., Raabe, J. & Holler, M. Fast positioning for X-ray scanning microscopy by a combined motion of sample and beam-defining optics. J. Synchrotron Radiat. 26, 504–509 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Odstrčil, M., Lebugle, M., Guizar-Sicairos, M., David, C. & Holler, M. Towards optimized illumination for high-resolution ptychography. Opt. Express 27, 14981–14997 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Müller, P., Schürmann, M. & Guck, J. The theory of diffraction tomography. Preprint at https://arxiv.org/abs/1507.00466 (2016).

  • Holler, M. & Raabe, J. Error motion compensating tracking interferometer for the position measurement of objects with rotational degree of freedom. Opt. Eng. 54, 054101 (2015).

    ADS 

    Google Scholar
     

  • Deng, J. et al. The Velociprobe: an ultrafast hard X-ray nanoprobe for high-resolution ptychographic imaging. Rev. Sci. Instrum. 90, 083701 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Odstrčil, M., Holler, M., Raabe, J. & Guizar-Sicairos, M. Alignment methods for nanotomography with deep subpixel accuracy. Opt. Express 27, 36637–36652 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Odstrcil, M. et al. Ab initio nonrigid X-ray nanotomography. Nat. Commun. 10, 2600 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallagher-Jones, M. et al. Nanoscale mosaicity revealed in peptide microcrystals by scanning electron nanodiffraction. Commun. Biol. 2, 26 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelz, P. M. et al. On-the-fly scans for X-ray ptychography. Appl. Phys. Lett. 105, 251101 (2014).

    ADS 

    Google Scholar
     

  • Huang, X. et al. Fly-scan ptychography. Sci. Rep. 5, 9074 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Y. et al. Achieving high spatial resolution in a large field-of-view using lensless X-ray imaging. Appl. Phys. Lett. 119, 124101 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Deng, J. et al. High-resolution ptychographic imaging enabled by high-speed multi-pass scanning. Opt. Express 30, 26027–26042 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Odstrcil, M. et al. Ptychographic coherent diffractive imaging with orthogonal probe relaxation. Opt. Express 24, 8360–8369 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Position-guided ptychography for vibration suppression with the aid of a laser interferometer. Opt. Lasers Eng. 160, 107297 (2023).


    Google Scholar
     

  • Odstrčil, M., Holler, M. & Guizar-Sicairos, M. Arbitrary-path fly-scan ptychography. Opt. Express 26, 12585–12593 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Klose, C. et al. Coherent correlation imaging for resolving fluctuating states of matter. Nature 614, 256–261 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daurer, B. J. et al. Ptychographic wavefront characterization for single-particle imaging at X-ray lasers. Optica 8, 551–562 (2021).

    ADS 

    Google Scholar
     

  • Du, Y. & Wong, M. D. F. Optimization of standard cell based detailed placement for 16 nm FinFET process. In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1–6 (IEEE, 2014).

  • Clark, L. T. et al. ASAP7: a 7-nm finFET predictive process design kit. Microelectron. J. 53, 105–115 (2016).


    Google Scholar
     

  • Crowther, R. A., DeRosier, D. J. & Klug, A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. A 317, 319–340 (1970).

    ADS 

    Google Scholar
     

  • Attwood, D. (ed.) Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications 337–394 (Cambridge Univ. Press, 1999).

  • Shamiryan, D., Abell, T., Iacopi, F. & Maex, K. Low-k dielectric materials. Mater. Today 7, 34–39 (2004).

    CAS 

    Google Scholar
     

  • Diaz, A. et al. Quantitative X-ray phase nanotomography. Phys. Rev. B 85, 020104 (2012).

    ADS 

    Google Scholar
     

  • Cheng, Y.-L. et al. in Noble and Precious Metals: Properties, Nanoscale Effects and Applications (eds Singh Seehra, M. & Bristow, A. D.) Ch. 10 (IntechOpen, 2018).

  • Parmigiani, F., Kay, E., Huang, T. C. & Swalen, J. D. Interpretation of the nonbulklike optical density of thin copper films grown under ion bombardment. Appl. Opt. 24, 3335–3338 (1985).

    ADS 
    CAS 

    Google Scholar
     

  • Maex, K. et al. Low dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793–8841 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Lee, H.-J. et al. Characterization of chemical-vapor-deposited low-k thin films using X-ray porosimetry. Appl. Phys. Lett. 82, 1084–1086 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Du, M. et al. Upscaling X-ray nanoimaging to macroscopic specimens. J. Appl. Crystallogr. 54, 386–401 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holler, M. et al. Three-dimensional imaging of integrated circuits with macro- to nanoscale zoom. Nat. Electron. 2, 464–470 (2019).


    Google Scholar
     

  • Holler, M. et al. OMNY PIN—a versatile sample holder for tomographic measurements at room and cryogenic temperatures. Rev. Sci. Instrum. 88, 113701 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai, E. H. R., Usov, I., Diaz, A., Menzel, A. & Guizar-Sicairos, M. X-ray ptychography with extended depth of field. Opt. Express 24, 29089–29108 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • Li, P. & Maiden, A. Multi-slice ptychographic tomography. Sci. Rep. 8, 2049 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai, E. H. R. et al. Correlated X-ray 3D ptychography and diffraction microscopy visualize links between morphology and crystal structure of lithium-rich cathode materials. iScience 11, 356–365 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Holler, M. et al. Environmental control for X-ray nanotomography. J. Synchrotron Radiat. 29, 1223–1231 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guizar-Sicairos, M. et al. Role of the illumination spatial-frequency spectrum for ptychography. Phys. Rev. B 86, 100103 (2012).

    ADS 

    Google Scholar
     

  • Dinapoli, R. et al. EIGER: next generation single photon counting detector for X-ray applications. Nucl. Instrum. Methods Phys. Res. A 650, 79–83 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Huang, X. et al. Optimization of overlap uniformness for ptychography. Opt. Express 22, 12634–12644 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Yeh, L.-H. et al. Experimental robustness of Fourier ptychography phase retrieval algorithms. Opt. Express 23, 33214–33240 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Loetgering, L. et al. PtyLab.m/py/jl: a cross-platform, open-source inverse modeling toolbox for conventional and Fourier ptychography. Opt. Express 31, 13763–13797 (2023).

    ADS 
    PubMed 

    Google Scholar
     

  • Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wakonig, K. et al. PtychoShelves, a versatile high-level framework for high-performance analysis of ptychographic data. J. Appl. Crystallogr. 53, 574–586 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. Translation position determination in ptychographic coherent diffraction imaging. Opt. Express 21, 13592–13606 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Guizar-Sicairos, M. et al. Phase tomography from X-ray coherent diffractive imaging projections. Opt. Express 19, 21345–21357 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • Wittwer, F. et al. Phase retrieval framework for direct reconstruction of the projected refractive index applied to ptychography and holography. Optica 9, 295–302 (2022).

    ADS 

    Google Scholar
     

  • Brunton, S. L. & Kutz, J. N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (Cambridge Univ. Press, 2019).

  • Zuo, C., Sun, J. & Chen, Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. Opt. Express 24, 4960–4972 (2016).


    Google Scholar
     

  • Enders, B. et al. Ptychography with broad-bandwidth radiation. Appl. Phys. Lett. 104, 171104 (2014).

    ADS 

    Google Scholar
     

  • Wittwer, F. et al. Ptychographic reconstruction with object initialization. Opt. Express 30, 33652–33663 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Loetgering, L., Du, M., Eikema, K. S. E. & Witte, S. zPIE: an autofocusing algorithm for ptychography. Opt. Lett. 45, 2030–2033 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Pertuz, S., Puig, D. & Garcia, M. A. Analysis of focus measure operators for shape-from-focus. Pattern Recognit. 46, 1415–1432 (2013).

    ADS 

    Google Scholar
     

  • Pertuz, S., Puig, D. & Garcia, M. A. Reliability measure for shape-from-focus. Image Vis. Comput. 31, 725–734 (2013).


    Google Scholar
     

  • Berry, M. V. & Klein, S. Integer, fractional and fractal Talbot effects. J. Mod. Opt. 43, 2139–2164 (1996).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Kaestner, A. P., Munch, B. & Trtik, P. Spatiotemporal computed tomography of dynamic processes. Opt. Eng. 50, 123201 (2011).

    ADS 

    Google Scholar
     

  • Deng, J. et al. Continuous motion scan ptychography: characterization for increased speed in coherent X-ray imaging. Opt. Express 23, 5438–5451 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kübel, C. et al. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 11, 378–400 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262 (2005).

    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *