• Shearer, C. K. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Lucey, P. Understanding the lunar surface and space-Moon interactions. Rev. Mineral. Geochem. 60, 83–219 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Vaniman, D., Dietrich, J., Taylor, G. J. & Heiken, G. in Lunar Sourcebook, A User’s Guide to the Moon (eds Heiken, G. H., Vaniman, D. T. & French, B. M.) 5–26 (Cambridge Univ. Press, 1991).

  • Qian, Y. et al. The regolith properties of the Chang’e-5 landing region and the ground drilling experiments using lunar regolith simulants. Icarus 337, 113508 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Korotev, R. Lunar geochemistry as told by lunar meteorites. Geochemistry 65, 297–346 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Joy, K. H. et al. Lunar meteorites. Rev. Mineral. Geochem. 89, 509–562 (2023).

    Article 

    Google Scholar
     

  • Ip, W.-H., Yan, J., Li, C.-L. & Ouyang, Z.-Y. Preface: The Chang’e-3 lander and rover mission to the Moon. Res. Astron. Astrophys. 14, 1511–1513 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wu, W. et al. Lunar farside to be explored by Chang’e-4. Nat. Geosci. 12, 222–223 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, C. et al. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature 569, 378–382 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanmugam, M. et al. Alpha particle X-ray spectrometer onboard Chandrayaan-2 rover. Curr. Sci. 118, 53 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Meyer, H., Denevi, B., Robinson, M. & Boyd, A. The global distribution of lunar light plains from the lunar reconnaissance orbiter camera. J. Geophys. Res. Planets 125, e2019JE006073 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Spudis, P. D., Reisse, R. A. & Gillis, J. J. Ancient multiring basins on the Moon revealed by Clementine laser altimetry. Science 266, 1848–1851 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Speyerer, E. J., Robinson, M. S., Boyd, A., Wagner, R. V. & Henriksen, M. R. Exploration of the lunar south pole with LROC data products. Lunar Surface Science Workshop, LPI Contribution No. 2241, id.5132 (2020).

  • Sinha, R. K., Rani, A., Ruj, T. & Bhardwaj, A. Geologic investigation of lobate scarps in the vicinity of Chandrayaan-3 landing site in the southern high latitudes of the moon. Icarus 402, 115636 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Durga Prasad, K. et al. Contextual characterization study of Chandrayaan-3 primary landing site. Mon. Not. R. Astron. Soc. 526, L116–L123 (2023).

    ADS 

    Google Scholar
     

  • Mithun, N. P. S. et al. Ground calibration of Alpha Particle X-ray Spectrometer (APXS) on-board Chandrayaan-2 Pragyaan rover: an empirical approach. Planet. Space Sci. 187, 104923 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Korotev, R. L. Some things we can infer about the Moon from the composition of the Apollo 16 regolith. Meteorit. Planet. Sci. 32, 447–478 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Laul, J. C. & Schmitt, E. A. Chemical composition of Luna 20 rocks and soil and Apollo 16 soils. Geochim. Cosmochim. Acta 37, 927–942 (1973).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Radhakrishna, V. et al. Chandrayaan-2 large area soft X-ray spectrometer. Curr. Sci. 118, 219–225 (2020).

    Article 

    Google Scholar
     

  • Pieters, C. et al. The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Curr. Sci. 96, 500–505 (2009).

    CAS 

    Google Scholar
     

  • Bansal, B. M. et al. The chemical composition of soil from the Apollo 16 and Luna 20 sites. Earth Planet. Sci. Lett. 17, 29–35 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wood, J. A., Dickey, J. S. Jr, Marvin, U. B. & Powell, B. N. Lunar anorthosites and a geophysical model of the moon. Geochim. Cosmochim. Acta Suppl. 1, 965 (1970).

    ADS 
    CAS 

    Google Scholar
     

  • Warren, P. H. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. 13, 201–240 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wood, J. A. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 17–55 (Lunar and Planetary Institute, 1986).

  • Srivastava, Y., Basu Sarbadhikari, A., Day, J. M., Yamaguchi, A. & Takenouchi, A. A changing thermal regime revealed from shallow to deep basalt source melting in the Moon. Nat. Commun. 13, 7594 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohtake, M. et al. The global distribution of pure anorthosite on the Moon. Nature 461, 236–240 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Donaldson Hanna, K. L. et al. Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust. J. Geophys. Res. Planets 119, 1516–1545 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Warren, P. H. Lunar anorthosites and the magma-ocean plagioclase-flotation hypotheses: importance of FeO enrichment in the parent magma. Am. Mineral. 75, 46–58 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • Warren, P. H. A concise compilation of petrologic information on possibly pristine nonmare Moon rocks. Am. Mineral. 78, 360–376 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • McCallum, I. S. A new view of the Moon in light of data from Clementine and Prospector missions. Earth Moon Planets 85, 253–269 (2001).

    ADS 

    Google Scholar
     

  • Cross, W., Iddings, J. P., Pirsson, L. V. & Washington, H. S. A quantitative chemico-mineralogical classification and nomenclature of igneous rocks. J. Geol. 10, 555–690 (1902).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Verma, S. P., Torres-Alvarado, I. S. & Velasco-Tapia, F. A revised CIPW norm. Swiss Bull. Mineral. Petrol. 83, 197–216 (2003).

    CAS 

    Google Scholar
     

  • Warren, P. H. & Korotev, R. L. Ground truth constraints and remote sensing of lunar highland crust composition. Meteorit. Planet. Sci. 57, 527–557 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meyer, C. The lunar sample compendium. NASA https://curator.jsc.nasa.gov/Lunar/lsc/index.cfm (2012).

  • Lemelin, M., Lucey, P. G. & Camon, A. Compositional maps of the lunar polar regions derived from the Kaguya Spectral Profiler and the Lunar Orbiter Laser Altimeter data. Planet. Sci. J. 3, 63 (2022).

    Article 

    Google Scholar
     

  • Wieczorek, M. A. & Zuber, M. T. The composition and origin of the lunar crust: constraints from central peaks and crustal thickness modeling. Geophys. Res. Lett. 28, 4023–4026 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Wieczorek, M. A. The constitution and structure of the lunar interior. Rev. Mineral. Geochem. 60, 221–364 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Dygert, N., Lin, J.-F., Marshall, E. W., Kono, Y. & Gardner, J. E. A low viscosity lunar magma ocean forms a stratified anorthitic flotation crust with mafic poor and rich units. Geophys. Res. Lett. 44, 11,282–11,291 (2017).

    Article 

    Google Scholar
     

  • Tompkins, S. & Pieters, C. M. Mineralogy of the lunar crust: results from Clementine. Meteorit. Planet. Sci. 34, 25–41 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stuart-Alexander, D. E. Geologic map of the central far side of the Moon. U.S. Geological Survey, IMAP 1047 (1978).

  • Yamamoto, S. et al. Possible mantle origin of olivine around lunar impact basins detected by SELENE. Nat. Geosci. 3, 533–536 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McGetchin, T. R., Settle, M. & Head, J. W. Radial thickness variation in impact crater ejecta: implications for lunar basin deposits. Earth Planet. Sci. Lett. 20, 226–236 (1973).

    Article 
    ADS 

    Google Scholar
     

  • Fassett, C. I., Head, J. W., Smith, D. E., Zuber, M. T. & Neumann, G. A. Thickness of proximal ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) data: implications for multi-ring basin formation. Geophys. Res. Lett. 38, L17201 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Klima, R. L. et al. New insights into lunar petrology: distribution and composition of prominent low-Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3). J. Geophys. Res. Planets 116, E00G06 (2011).

    Article 

    Google Scholar
     

  • Sinha, R. K. et al. Geological characterization of Chandrayaan-2 landing site in the southern high latitudes of the Moon. Icarus 337, 113449 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pike, R. J. Depth/diameter relations of fresh lunar craters: revision from spacecraft data. Geophys. Res. Lett. 1, 291–294 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Ivanov, B. A. Size-frequency distribution of small lunar craters: widening with degradation and crater lifetime. Sol. Syst. Res. 52, 1–25 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Borg, L. E., Connelly, J. N., Boyet, M. & Carlson, R. W. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pernet-Fisher, J. F., Deloule, E. & Joy, K. H. Evidence of chemical heterogeneity within lunar anorthosite parental magmas. Geochim. Cosmochim. Acta 266, 109–130 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gross, J., Treiman, A. H. & Mercer, C. N. M. in Proc. 43rd Lunar and Planetary Science Conference 2306 (Lunar and Planetary Institute, 2012).

  • Shirley, D. N. A partially molten magma ocean model. J. Geophys. Res. Solid Earth 88, A519–A527 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Elardo, S. M., Laneuville, M., McCubbin, F. M. & Shearer, C. K. Early crust building enhanced on the Moon’s nearside by mantle melting-point depression. Nat. Geosci. 13, 339–343 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gross, J., Treiman, A. H. & Mercer, C. N. Lunar feldspathic meteorites: constraints on the geology of the lunar highlands, and the origin of the lunar crust. Earth Planet. Sci. Lett. 388, 318–328 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Song, E., Bandfield, J. L., Lucey, P. G., Greenhagen, B. T. & Paige, D. A. Bulk mineralogy of lunar crater central peaks via thermal infrared spectra from the Diviner Lunar Radiometer: a study of the Moon’s crustal composition at depth. J. Geophys. Res. Planets 118, 689–707 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Elkins-Tanton, L. T. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chowdhury, A. R. et al. Orbiter high resolution camera onboard Chandrayaan-2 orbiter. Curr. Sci. 118, 560–565 (2020).

    Article 

    Google Scholar
     

  • Shearer, C. K., Elardo, S. M., Petro, N. E., Borg, L. E. & McCubbin, F. M. Origin of the lunar highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective. Am. Mineral. 100, 294–325 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Arnaud, K. A., George, I. M. & Tennant, A. F. The OGIP spectral file format. https://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/spectra/ogip_92_007.pdf (2021).

  • Arnaud, K. A. in Astronomical Data Analysis Software and Systems V (eds Jacoby, G. H. & Barnes, J.) 17 (Astronomical Society of the Pacific, 1996).

  • Arnaud, K., Dorman, B., Gordon, C. & Rutkowski, K. Xspec users’ guide. https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/manual.html (2024).

  • Campbell, J. L. et al. Calibration of the Mars Science Laboratory alpha particle X-ray spectrometer. Space Sci. Rev. 170, 319–340 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Narendranath, S. et al. Lunar elemental abundances as derived from Chandrayaan-2. Icarus 410, 115898 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bhatt, M., Wöhler, C., Grumpe, A., Hasebe, N. & Naito, M. Global mapping of lunar refractory elements: multivariate regression vs. machine learning. Astron. Astrophys. 627, A155 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pillai, N. S. et al. Chandrayaan-2 Large Area Soft X-ray Spectrometer (CLASS): calibration, in-flight performance and first results. Icarus 363, 114436 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Taylor, S. R. et al. Composition of the Descartes region, lunar highlands. Geochim. Cosmochim. Acta 37, 2665–2683 (1973).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Korotev, R. L. in Proc. 12th Lunar and Planetary Science Conference 577–605 (Pergamon Press, 1982).

  • Laul, J. C. & Schmitt, R. A. in Proc. 4th Lunar and Planetary Science Conference 460 (Pergamon Press, 1973).

  • Dowty, E., Keil, K. & Prinz, M. in The Apollo 15 Lunar Samples 62–66 (Lunar Science Institute, 1972).

  • Haskin, L. A., Helmke, P. A., Blanchard, D. P., Jacobs, J. W. & Telander, K. in Proc. 4th Lunar and Planetary Science Conference 1275–1296 (Pergamon Press, 1973).

  • Haskin, L. A. et al. in Proc. 5th Lunar and Planetary Science Conference 1213–1225 (Pergamon Press, 1974).

  • Haskin, L. A. & Korotev, R. L. in Proc. 12th Lunar and Planetary Science Conference 404–405 (Pergamon Press, 1981).

  • Laul, J. C. & Schmitt, R. A. in Proc. 6th Lunar and Planetary Science Conference 1231–1254 (Pergamon Press, 1975).

  • Philpotts, J. A. et al. in Proc. 4th Lunar and Planetary Science Conference 1427 (Pergamon Press, 1973).

  • Rhodes, J. M. & Hubbard, N. J. in Proc. 4th Lunar and Planetary Science Conference 1127 (Pergamon Press, 1973).

  • Ridley, W. I., Hubbard, N. J., Rhodes, J. M., Weismann, H. & Bansal, B. The petrology of lunar breccia 15445 and petrogenetic implications. J. Geol. 81, 621–631 (1973).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rose, H. J. Jr et al. in Proc. 4th Lunar and Planetary Science Conference 1149 (Pergamon Press, 1973).

  • Rose, H. J. Jr et al. in Proc. 6th Lunar and Planetary Science Conference 1363–1373 (Pergamon Press, 1975).

  • Taylor, S. R. Chemical evidence for lunar melting and differentiation. Nature 245, 203–205 (1973).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taylor, S. R. et al. in Proc. 5th Lunar and Planetary Science Conference 789 (Pergamon Press, 1974).

  • Wänke, H. et al. in Proc. 4th Lunar and Planetary Science Conference 1461 (Pergamon Press, 1973).

  • Wänke, H. et al. in Proc. 6th Lunar and Planetary Science Conference 1313–1340 (Pergamon Press, 1975).

  • Wänke, H. et al. in Proc. 7th Lunar and Planetary Science Conference 3479–3499 (Pergamon Press, 1976).

  • Nava, D. F. in Proc. 5th Lunar and Planetary Science Conference 1087–1096 (Pergamon Press, 1974).

  • Rhodes, J. M. et al. in Proc. 5th Lunar and Planetary Science Conference 1097–1117 (Pergamon Press, 1974).

  • Winzer, S. R. et al. Major, minor and trace element abundances in samples from the Apollo 17 station 7 boulder: implications for the origin of early lunar crustal rocks. Earth Planet. Sci. Lett. 23, 439–444 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blanchard, D. P. et al. in Proc. 6th Lunar and Planetary Science Conference 2321–2341 (Pergamon Press, 1975).

  • Dixon, J. R. & Papike, J. J. in Proc. 6th Lunar and Planetary Science Conference 263–291 (Pergamon Press, 1975).

  • Dymek, R. F., Albee, A. L. & Chodos, A. A. in Proc. 6th Lunar and Planetary Science Conference 301–341 (Pergamon Press, 1975).

  • Warner, J. L., Simonds, C. H. & Phinney, W. C. in Proc. 7th Lunar and Planetary Science Conference 915 (Pergamon Press, 1976).

  • Lindstrom, M. M., Nielsen, R. L. & Drake, M. J. in Proc. 8th Lunar and Planetary Science Conference 2869–2888 (Pergamon Press, 1977).

  • Lindstrom, M. M., Marvin, U. B., Vetter, S. K. & Shervais, J. W. in Proc. 18th Lunar and Planetary Science Conference 169–185 (Cambridge Univ. Press/Lunar and Planetary Institute, 1988).

  • Murali, A. V., Ma, M. S., Laul, J. C. & Schmitt, R. A. in Proc. 8th Lunar and Planetary Science Conference 700 (Pergamon Press, 1977).

  • Warren, P. H. & Wasson, J. T. in Proc. 8th Lunar and Planetary Science Conference 2215–2235 (Pergamon Press, 1977).

  • Warren, P. H. & Wasson, J. T. in Proc. 9th Lunar and Planetary Science Conference 185–217 (Pergamon Press, 1978).

  • Warren, P. H. & Wasson, J. T. in Proc. 10th Lunar and Planetary Science Conference 2051–2083 (Pergamon Press, 1979).

  • Stöeffler, D., Knoell, H. D., Marvin, U. B., Simonds, C. H. & Warren, P. H. in Proc. Conf. Lunar Highlands Crust (eds Merrill, R. B. & Papike, J. J.) 51–70 (Pergamon Press, 1980).

  • James, O. B. & McGee, J. J. in Proc. 10th Lunar and Planetary Science Conference 713–743 (Pergamon Press, 1979).

  • Marvin, U. B. & Warren, P. H. in Proc. 11th Lunar and Planetary Science Conference 507–521 (Pergamon Press, 1980).

  • Ryder, G., Norman, M. D. & Score, R. A. in Proc. 11th Lunar and Planetary Science Conference 471–479 (Pergamon Press, 1980).

  • Taylor, G. J., Warner, R. D., Keil, K., Ma, M. S. & Schmitt, R. A. in Proc. Conf. Lunar Highlands Crust (eds Merrill, R. B. & Papike, J. J.) 339–352 (Pergamon Press, 1980).

  • Blanchard, D. P. & McKay, G. A. in Proc. 12th Lunar and Planetary Science Conference 83–85 (Pergamon Press, 1981).

  • Simonds, C. H. & Warner, J. L. in Proc. 12th Lunar and Planetary Science Conference 993–995 (Pergamon Press, 1981).

  • Warren, P. H., Taylor, G. J., Keil, K., Marshall, C. & Wasson, J. T. in Proc. 12th Lunar and Planetary Science Conference 1154–1156 (Pergamon Press, 1981).

  • Warren, P. H., Taylor, G. J., Keil, K., Marshall, C. & Wasson, J. T. in Proc. 12th Lunar and Planetary Science Conference 21–40 (Pergamon Press, 1982).

  • Warren, P. H., Taylor, G. J., Keil, K., Shirley, D. N. & Wasson, J. T. Petrology and chemistry of two “large” granite clasts from the moon. Earth Planet. Sci. Lett. 64, 175–185 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Warren, P. H. et al. Seventh Foray: Whitlockite-rich lithologies, a diopside-bearing troctolitic anorthosite, ferroan anorthosites, and KREEP. J. Geophys. Res. Solid Earth 88, B151–B164 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Warren, P. H., Shirley, D. N. & Kallemeyn, G. W. A potpourri of pristine Moon rocks, including a VHK mare basalt and a unique, augite-rich Apollo 17 anorthosite. J. Geophys. Res. Solid Earth 91, 319–330 (1986).

    Article 

    Google Scholar
     

  • Warren, P. H., Jerde, E. A. & Morris, R. V. in Proc. 18th Lunar and Planetary Science Conference 1060, (Cambridge Univ. Press, 1987).

  • Warren, P. H., Jerde, E. A. & Kallemeyn, G. W. in Proc. 20th Lunar and Planetary Science Conference 31–59 (Lunar and Planetary Institute, 1990).

  • Warren, P. H., Jerde, E. A. & Kallemeyn, G. W. in Proc. 21st Lunar and Planetary Science Conference 51–61 (Lunar and Planetary Institute, 1991).

  • Hunter, R. H. & Taylor, L. A. The magma ocean from the Fra Mauro shoreline: an overview of the Apollo 14 crust. J. Geophys. Res. Solid Earth 88, A591–A602 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • James, O. B. & Flohr, M. K. Subdivision of the Mg-suite noritic rocks into Mg-gabbronorites and Mg-norites. J. Geophys. Res. Solid Earth 88, A603–A614 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marti, K. et al. Pieces of the ancient lunar crust: ages and composition of clasts in consortium breccia 67915. J Geophys. Res. Solid Earth 88, B165–B175 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Nord, G. L. Jr & Wandless, M. V. Petrology and comparative thermal and mechanical histories of clasts in breccia 62236. J. Geophys. Res. Solid Earth 88, A645–A657 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shervais, J. W., Taylor, L. A. & Laul, J. C. Ancient crustal components in the Fra Mauro breccias. J. Geophys. Res. Solid Earth 88, B177–B192 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Shervais, J. W., Taylor, L. A., Laul, J. C. & Smith, M. R. Pristine highland clasts in consortium breccia 14305: petrology and geochemistry. J. Geophys. Res. Solid Earth 89, C25–C40 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ryder, G. in Workshop on the Geology of the Apollo 15 Landing Site (eds Spudis, P. D. & Ryder, G.) 41–45 (Lunar and Planetary Institute, 1985).

  • Laul, J. C. Chemistry of the Apollo 12 highland component. J. Geophys. Res. Solid Earth 91, 241–261 (1986).

    Article 

    Google Scholar
     

  • James, O. B., Lindstrom, M. M. & Flohr, M. K. Petrology and geochemistry of alkali gabbronorites from lunar breccia 67975. J. Geophys. Res. Solid Earth 92, E314–E330 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • James, O. B., Lindstrom, M. M. & Flohr, M. K. in Proc. 19th Lunar and Planetary Science Conference 219–243 (Cambridge Univ. Press/Lunar and Planetary Institute, 1989).

  • Marvin, U. B., Lindstrom, M. M., Bernatowicz, T. J., Podosek, F. A. & Sugiura, N. The composition and history of breccia 67015 from North Ray Crater. J. Geophys. Res. Solid Earth 92, E471–E490 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Simon, S. B., Papike, J. J., Laul, J. C., Hughes, S. S. & Schmitt, R. A. Apollo 16 regolith breccias and soils: recorders of exotic component addition to the Descartes region of the moon. Earth Planet. Sci. Lett. 89, 147–162 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ryder, G. & Sherman, S. B. The Apollo 15 coarse fines (4–10 mm). NASA Technical Memorandum 19900005711 (1989).

  • Lindstrom, M. M., Marvin, U. B. & Mittlefehldt, D. W. in Proc. 19th Lunar and Planetary Science Conference 245–254 (Cambridge Univ. Press/Lunar and Planetary Institute, 1989).

  • Jolliff, B. L., Korotev, R. L. & Haskin, L. A. in Proc. 21st Lunar and Planetary Science Conference 193–219 (Lunar and Planetary Institute, 1991).

  • Norman, M. D. & Taylor, S. R. Geochemistry of lunar crustal rocks from breccia 67016 and the composition of the Moon. Geochim. Cosmochim. Acta 56, 1013–1024 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Snyder, G. A., Taylor, L. A., Liu, Y. G. & Schmitt, R. A. in Proc. 22nd Lunar and Planetary Science Conference 399–416 (Lunar and Planetary Institute, 1992).

  • Shih, C. Y. et al. Ages of pristine noritic clasts from lunar breccias 15445 and 15455. Geochim. Cosmochim. Acta 57, 915–931 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jolliff, B. L. & Haskin, L. A. Cogenetic rock fragments from a lunar soil: evidence of a ferroan noritic-anorthosite pluton on the Moon. Geochim. Cosmochim. Acta 59, 2345–2374 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Norman, M. D., Keil, K., Griffin, W. L. & Ryan, C. G. Fragments of ancient lunar crust: petrology and geochemistry of ferroan noritic anorthosites from the Descartes region of the Moon. Geochim. Cosmochim. Acta 59, 831–847 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Norman, M. D., Borg, L. E., Nyquist, L. E. & Bogard, D. D. Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteorit. Planet. Sci. 38, 645–661 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hansen, E. C., Smith, J. V. & Steele, I. M. in Proc. 11th Lunar and Planetary Science Conference 523–533 (Pergamon Press, 1980).

  • Hollocher, K. NORM4 Excel spreadsheet programs to calculate petrologic norms from whole-rock chemical analyses. Zenodo https://doi.org/10.5281/zenodo.5818037 (2022).

  • Lucey, P. G., Blewett, D. T., Taylor, G. J. & Hawke, B. R. Imaging of lunar surface maturity. J. Geophys. Res. Planets 105, 20377–20386 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McEwen, A. S. in Proc. 27th Lunar and Planetary Science Conference 841 (Lunar and Planetary Institute, 1996).

  • Pieters, C. M. in Proc. Workshop on New Views of the Moon II: Understanding the Moon Through the Integration of Diverse Datasets 8025 (Lunar and Planetary Institute, 1999).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *