Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, Q03004 (2010).
Raup, D. M. & Sepkoski, J. J. Jr Periodicity of extinctions in the geologic past. Proc. Natl Acad. Sci. 81, 801–805 (1984).
Schlanger, S. O. & Jenkyns, H. C. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnb. 55, 179–184 (1976).
Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).
Erba, E. & Larson, R. L. The Cismon APTICORE (Southern Alps, Italy): a “reference section” for the Lower Cretaceous at low latitudes. Riv. Ital. Paleontol. Stratigr. 104, 181–191 (1998).
Li, Y.-X. et al. Toward an orbital chronology for the early Aptian oceanic anoxic event (OAE1a, ~120 Ma). Earth Planet. Sci. Lett. 271, 88–100 (2008).
Erba, E. et al. Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism. Geol. Soc. Am. Spec. Pap. 511, 271–303 (2015).
Penn, J. L. & Deutsch, C. Avoiding ocean mass extinction from climate warming. Science 376, 524–526 (2022).
Oschlies, A. A committed fourfold increase in ocean oxygen loss. Nat. Commun. 12, 2307 (2021).
Reershemius, T. & Planavsky, N. J. What controls the duration and intensity of ocean anoxic events in the Paleozoic and the Mesozoic? Earth Sci. Rev. 221, 103787 (2021).
Keeling, R. F., Kortzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).
Falkowski, P. G. et al. Ocean deoxygenation: past, present, and future. Eos Trans. Am. Geophys. Union 92, 409–410 (2011).
Bottini, C., Cohen, A. S., Erba, E., Jenkyns, H. C. & Coe, A. L. Osmium-isotope evidence for volcanism, weathering, and ocean mixing during the early Aptian OAE 1a. Geology 40, 583–586 (2012).
Bauer, K. W. et al. Pulsed volcanism and rapid oceanic deoxygenation during Oceanic Anoxic Event 1a. Geology 49, 1452–1456 (2021).
Percival, L. et al. Determining the style and provenance of magmatic activity during the Early Aptian Oceanic Anoxic Event (OAE 1a). Global Planet. Change 200, 103461 (2021).
Keller, C. E. et al. A volcanically induced climate warming and floral change preceded the onset of OAE1a (Early Cretaceous). Palaeogeogr. Palaeoclimatol. Palaeoecol. 305, 43–49 (2011).
Mutterlose, J., Bottini, C., Schouten, S. & Sinninghe Damsté, J. S. High sea-surface temperatures during the early Aptian Oceanic Anoxic Event 1a in the Boreal Realm. Geology 42, 439–442 (2014).
Blok, C. et al. Latitude-dependant climate changes across the Aptian Oceanic Anoxic Event 1a. Palaeogeogr. Palaeoclimatol. Palaeoecol. 601, 111085 (2022).
Bottini, C. et al. Climate variability and ocean fertility during the Aptian Stage. Clim. Past 11, 383–402 (2015).
Lechler, M., von Strandmann, P., Jenkyns, H. C., Prosser, G. & Parente, M. Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event). Earth Planet. Sci. Lett. 432, 210–222 (2015).
Blattler, C. L., Jenkyns, H. C., Reynard, L. M. & Henderson, G. M. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth Planet. Sci. Lett. 309, 77–88 (2011).
Bauer, K. W. et al. Ferruginous oceans during OAE1a and collapse of the marine sulfate pool. Earth Planet. Sci. Lett. 578, 117324 (2022).
Malinverno, A., Erba, E. & Herbert, T. D. Orbital tuning as an inverse problem: chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE. Paleoceanography 25, PA2203 (2010).
Dasch, E. J. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochim. Cosmochim. Acta 33, 1521–1552 (1969).
Chen, J., An, Z. & Head, J. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quat. Res. 51, 215–219 (1999).
Grygar, T. M. et al. Lithological correction of chemical weathering proxies based on K, Rb, and Mg contents for isolation of orbital signals in clastic sedimentary archives. Sediment. Geol. 406, 105717 (2020).
Steiner, Z. et al. Authigenic formation of clay minerals in the abyssal North Pacific. Global Biogeochem. Cycles 36, e2021GB007270 (2022).
Michalopoulos, P. & Aller, R. C. Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995).
Whitfield, M. The mean oceanic residence time (MORT) concept – a rationalisation. Mar. Chem. 8, 101–123 (1979).
Calvert, S. E. & Pedersen, T. F. in Developments in Marine Geology Vol. 1 (ed. Hillaire-Marcel, C.) 567–644 (Elsevier, 2007).
Penman, D. E., Rugenstein, J. K. C., Ibarra, D. E. & Winnick, M. J. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle. Earth Sci. Rev. 209, 103298 (2020).
Walker, J. C., Hays, P. & Kasting, J. F. A negative feedback mechanism for the long‐term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).
Kump, L. R. & Arthur, M. A. in Tectonic Uplift and Climate Change (ed. Ruddiman, W. F.) 399–426 (Springer, 1997).
Zeebe, R. E. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4. Geosci. Model Dev. 5, 149–166 (2012).
Bauer, K. W., Zeebe, R. E. & Wortmann, U. G. Quantifying the volcanic emissions which triggered Oceanic Anoxic Event 1a and their effect on ocean acidification. Sedimentology 64, 204–214 (2017).
Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).
Tejada, M. L. G. et al. Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event. Geology 37, 855–858 (2009).
Davidson, P. C., Koppers, A. A., Sano, T. & Hanyu, T. A younger and protracted emplacement of the Ontong Java Plateau. Science 380, 1185–1188 (2023).
Adloff, M. et al. Unravelling the sources of carbon emissions at the onset of Oceanic Anoxic Event (OAE) 1a. Earth Planet. Sci. Lett. 530, 115947 (2020).
Jiang, Q. et al. Volume and rate of volcanic CO2 emissions governed the severity of past environmental crises. Proc. Natl Acad. Sci. 119, e2202039119 (2022).
Bodin, S., Godet, A., Westermann, S. & Follmi, K. B. Secular change in northwestern Tethyan water-mass oxygenation during the late Hauterivian–early Aptian. Earth Planet. Sci. Lett. 374, 121–131 (2013).
Hueter, A. et al. Central Tethyan platform-top hypoxia during Oceanic Anoxic Event 1a. Clim. Past 15, 1327–1344 (2019).
Hueter, A. et al. Evaluating the role of coastal hypoxia on the transient expansion of microencruster intervals during the early Aptian. Lethaia 54, 399–418 (2021).
Erba, E. & Tremolada, F. Nannofossil carbonate fluxes during the Early Cretaceous: phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia. Paleoceanography 19, PA1008 (2004).
Naafs, B. D. A. et al. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nat. Geosci. 9, 135–139 (2016).
Herbert, T. D. & Fischer, A. G. Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature 321, 739–743 (1986).
Herbert, T. D., Stallard, R. & Fischer, A. G. Anoxic events, productivity rhythms, and the orbital signature in a Mid‐Cretaceous deep‐sea sequence from central Italy. Paleoceanography 1, 495–506 (1986).
Fischer, A. G., Herbert, T. D., Napoleone, G., Premoli Silva, I. & Ripepe, M. Albian pelagic rhythms (Piobbico core). J. Sediment. Res. 61, 1164–1172 (1991).
Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).
Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).
Stramma, L. & Schmidtko, S. in Ocean Deoxygenation: Everyone’s Problem. Causes, Impacts, Consequences and Solutions (eds Laffoley, D. & Baxter, J. M.) 23–36 (International Union for Conservation of Nature, 2019).
Li, Y.-H. & Schoonmaker, J. E. in Treatise on Geochemistry Vol. 7 (eds Holland, H. D. & Turekian, K. K.) 1–35 (Elsevier, 2003).
Condie, K. C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol. 104, 1–37 (1993).
Nozaki, Y. in Encyclopedia of Ocean Sciences 2354–2366 (Academic, 2001).
Heimhofer, U., Hochuli, P. A., Herrle, J. O., Andersen, N. & Weissert, H. Absence of major vegetation and palaeoatmospheric pCO2 changes associated with oceanic anoxic event 1a (Early Aptian, SE France). Earth Planet. Sci. Lett. 223, 303–318 (2004).
Pourmand, A., Dauphas, N. & Ireland, T. J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. 291, 38–54 (2012).
Tostevin, R. et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem. Geol. 438, 146–162 (2016).
Lawrence, M. G., Greig, A., Collerson, K. D. & Kamber, B. S. Rare earth element and yttrium variability in South East Queensland waterways. Aquat. Geochem. 12, 39–72 (2006).
Barrat, J.-A., Bayon, G. & Lalonde, S. Calculation of cerium and lanthanum anomalies in geological and environmental samples. Chem. Geol. 615, 121202 (2023).
Bau, M. & Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 79, 37–55 (1996).
Naafs, B. & Pancost, R. Sea-surface temperature evolution across Aptian oceanic anoxic event 1a. Geology 44, 959–962 (2016).
Menegatti, A. P. et al. High-resolution δ13C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys. Paleoceanography 13, 530–545 (1998).
Haw, W. W. et al. Alternative global Cretaceous paleogeography. Geol. Soc. Am. Spec. Pap. 332, 1–47 (1999).