• Chladni, E. F. F. Über den Ursprung der von Pallas Gefundenen und anderer ihr ähnlicher Eisenmassen, und Über Einige Damit in Verbindung stehende Naturerscheinungen (Johan Friedrich Hartknoch, 1794).

  • Biot, J.-B. Vorläufige Nachricht von dem Steinregen zu l’Aigle, am 26sten April 1803. Ann. Phys. 15, 74–76 (1803).


    Google Scholar
     

  • Kulik, L. A. Otčet meteoritičeskoj ekspedicii o rabotach proizvedennych s 19 Maja 1921 g. po 29 Nojabrja 1922 g. Izv. Ross. Akad. Nauk 16, 391–410 (1922).


    Google Scholar
     

  • Marvin, U. B. The discovery and initial characterization of Allan Hills 81005: the first lunar meteorite. Geophys. Res. Lett. 10, 775–778 (1983).

    ADS 
    CAS 

    Google Scholar
     

  • Treiman, A. H., Gleason, J. D. & Bogard, D. D. The SNC meteorites are from Mars. Planet. Space Sci. 48, 1213–1230 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Thomas, P. C. et al. Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science 277, 1492–1495 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • Nesvorný, D., Bottke, J., William, F., Dones, L. & Levison, H. F. The recent breakup of an asteroid in the main-belt region. Nature 417, 720–771 (2002).

    ADS 

    Google Scholar
     

  • Sykes, M. V. Zodiacal dust bands: their relation to asteroid families. Icarus 85, 267–289 (1990).

    ADS 

    Google Scholar
     

  • Reach, W. T., Franz, B. A. & Weiland, J. L. The three-dimensional structure of the zodiacal dust bands. Icarus 127, 461–484 (1997).

    ADS 

    Google Scholar
     

  • Nesvorný, D., Bottke, W. F., Levison, H. F. & Dones, L. Recent origin of the Solar System dust bands. Astrophys. J. 591, 486–497 (2003).

    ADS 

    Google Scholar
     

  • Graf, T. & Marti, K. Collisional history of H chondrites. J. Geophys. Res. 100, 21247–21264 (1995).

    ADS 

    Google Scholar
     

  • Eugster, O., Herzog, G. F., Marti, K. & Caffee, M. W. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 829 (Univ. Arizona Press, 2006).

  • Spurný, P., Borovička, J. & Shrbený, L. The Žďár nad Sázavou meteorite fall: fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery. Meteorit. Planet. Sci. 55, 376–401 (2020).

    ADS 

    Google Scholar
     

  • Brown, P., Wiegert, P., Clark, D. & Tagliaferri, E. Orbital and physical characteristics of meter-scale impactors from airburst observations. Icarus 266, 96–111 (2016).

    ADS 

    Google Scholar
     

  • Jenniskens, P. et al. CAMS newly detected meteor showers and the sporadic background. Icarus 266, 384–409 (2016).

    ADS 

    Google Scholar
     

  • Bottke, W. F. et al. Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156, 399–433 (2002).

    ADS 

    Google Scholar
     

  • Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018).

    ADS 

    Google Scholar
     

  • Nesvorný, D. et al. NEOMOD: a new orbital distribution model for near-Earth objects. Astron. J. 166, 55 (2023).

    ADS 

    Google Scholar
     

  • Binzel, R. P., Bus, S. J., Burbine, T. H. & Sunshine, J. M. Spectral properties of near-Earth asteroids: evidence for sources of ordinary chondrite meteorites. Science 273, 946–948 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858–860 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Marsset, M. et al. The debiased compositional distribution of MITHNEOS: global match between the near-Earth and main-belt asteroid populations, and excess of D-type near-Earth objects. Astron. J. 163, 165 (2022).

    ADS 

    Google Scholar
     

  • Farinella, P., Vokrouhlický, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Bus, S. J. & Binzel, R. P. Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus 158, 146–177 (2002).

    ADS 

    Google Scholar
     

  • DeMeo, F. E., Binzel, R. P., Slivan, S. M. & Bus, S. J. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202, 160–180 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Vernazza, P. et al. Multiple and fast: the accretion of ordinary chondrite parent bodies. Astrophys. J. 791, 120 (2014).

    ADS 

    Google Scholar
     

  • Vernazza, P. et al. Compositional homogeneity of CM parent bodies. Astron. J. 152, 54 (2016).

    ADS 

    Google Scholar
     

  • de León, J., Licandro, J., Serra-Ricart, M., Pinilla-Alonso, N. & Campins, H. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astron. Astrophys. 517, A23 (2010).


    Google Scholar
     

  • Molnar, L. A. & Haegert, M. J. Details of Recent Collisions of Asteroids 832 Karin and 158 Koronis. In Proc. AAS/Division for Planetary Sciences Meeting, 41, 27.05 (2009).

  • Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Sykes, M. Physical properties of asteroid dust bands and their sources. Icarus 181, 107–144 (2006).

    ADS 

    Google Scholar
     

  • Flynn, G. J., Durda, D. D., Sandel, L. E., Kreft, J. W. & Strait, M. M. Dust production from the hypervelocity impact disruption of the Murchison hydrous CM2 meteorite: implications for the disruption of hydrous asteroids and the production of interplanetary dust. Planet. Space Sci. 57, 119–126 (2009).

    ADS 

    Google Scholar
     

  • Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009).

    ADS 

    Google Scholar
     

  • Campo Bagatin, A., Cellino, A., Davis, D. R., Farinella, P. & Paolicchi, P. Wavy size distributions for collisional systems with a small-size cutoff. Planet. Space Sci. 42, 1079–1092 (1994).

    ADS 

    Google Scholar
     

  • O’Brien, D. P. & Greenberg, R. The collisional and dynamical evolution of the main-belt and NEA size distributions. Icarus 178, 179–212 (2005).

    ADS 

    Google Scholar
     

  • Brož, M., Vokrouhlický, D., Morbidelli, A., Nesvorný, D. & Bottke, W. F. Did the Hilda collisional family form during the late heavy bombardment? Mon. Not. R. Astron. Soc. 414, 2716–2727 (2011).

    ADS 

    Google Scholar
     

  • Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994).

    ADS 

    Google Scholar
     

  • Yarkovsky, I. O. Plotnosť svetovogo efira i okazyvaemoe im soprotivlenie dviženiu (Typografia Judina, 1901).

  • Vokrouhlický, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335, 1093–1100 (1998).

    ADS 

    Google Scholar
     

  • Vokrouhlický, D. & Farinella, P. The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for spherical bodies. Astron. J. 118, 3049–3060 (1999).

    ADS 

    Google Scholar
     

  • Rubincam, D. P. Radiative spin-up and spin-down of small asteroids. Icarus 148, 2–11 (2000).

    ADS 

    Google Scholar
     

  • Čapek, D. & Vokrouhlický, D. The YORP effect with finite thermal conductivity. Icarus 172, 526–536 (2004).

    ADS 

    Google Scholar
     

  • Gattacceca, J. et al. The Meteoritical Bulletin, No. 110. Meteorit. Planet. Sci. 57, 2102–2105 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature https://doi.org/10.1038/s41586-024-08007-6 (2024).

  • Meier, M. Meteorite Orbits www.meteoriteorbits.info/ (2023).

  • Farley, K. A., Vokrouhlický, D., Bottke, W. F. & Nesvorný, D. A late Miocene dust shower from the break-up of an asteroid in the main belt. Nature 439, 295–297 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Chesley, S. R., Chodas, P. W., Milani, A., Valsecchi, G. B. & Yeomans, D. K. Quantifying the risk posed by potential Earth impacts. Icarus 159, 423–432 (2002).

    ADS 

    Google Scholar
     

  • Lauretta, D. S. et al. The unexpected surface of asteroid (101955) Bennu. Nature 568, 55–60 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top-shaped rubble pile. Science 364, 268–272 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Novaković, B., Tsiganis, K. & Knežević, Z. Chaotic transport and chronology of complex asteroid families. Mon. Not. R. Astron. Soc. 402, 1263–1272 (2010).

    ADS 

    Google Scholar
     

  • Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010).

    ADS 

    Google Scholar
     

  • Bottke, W. F. et al. in Asteroids IV (eds Michel, P. et al.) 701–724 (Univ. Arizona Press, 2015).

  • Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Michel, P. et al.) 297–321 (Univ. Arizona Press, 2015).

  • Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).

    ADS 

    Google Scholar
     

  • Bottke, W. F. et al. Interpreting the cratering histories of Bennu, Ryugu, and other spacecraft-explored asteroids. Astron. J. 160, 14 (2020).

    ADS 

    Google Scholar
     

  • Vernazza, P. et al. The impact crater at the origin of the Julia family detected with VLT/SPHERE? Astron. Astrophys. 618, A154 (2018).


    Google Scholar
     

  • Ševeček, P. et al. SPH/N-Body simulations of small (D = 10 km) asteroidal breakups and improved parametric relations for Monte-Carlo collisional models. Icarus 296, 239–256 (2017).

    ADS 

    Google Scholar
     

  • Harris, A. W. et al. in Asteroids IV (eds Michel, P. et al.) 835–854 (Univ. Arizona Press, 2015).

  • O’Brien, D. P. et al. Constraining the cratering chronology of Vesta. Planet. Space Sci. 103, 131–142 (2014).

    ADS 

    Google Scholar
     

  • Marchi, S. et al. The violent collisional history of asteroid 4 Vesta. Science 336, 690 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • Brož, M., Chrenko, O., Nesvorný, D. & Dauphas, N. Early terrestrial planet formation by torque-driven convergent migration of planetary embryos. Nat. Astron. 5, 898–902 (2021).

    ADS 

    Google Scholar
     

  • Love, S. G. & Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Carruba, V., Nesvorný, D. & Vokrouhlický, D. Detection of the YORP effect for small asteroids in the Karin cluster. Astron. J. 151, 164 (2016).

    ADS 

    Google Scholar
     

  • Quinn, T. R., Tremaine, S. & Duncan, M. A three million year integration of the Earth’s orbit. Astron. J. 101, 2287–2305 (1991).

    ADS 

    Google Scholar
     

  • Gradie, J. C., Chapman, C. R. & Tedesco, E. F. in Asteroids II (eds Binzel, R. P. et al.) 316–335 (Univ. Arizona Press, 1989).

  • Harris, A. W. & Chodas, P. W. The population of near-Earth asteroids revisited and updated. Icarus 365, 114452 (2021).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *