• Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Borg, L. E., Connelly, J. N., Boyet, M. & Carlson, R. W. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaffney, A. M. & Borg, L. E. A young solidification age for the lunar magma ocean. Geochim. Cosmochim. Acta 140, 227–240 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Borg, L. E. et al. Isotopic evidence for a young lunar magma ocean. Earth Planet. Sci. Lett. 523, 115706 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat. Geosci. 2, 133–136 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greer, J. et al. 4.46 Ga zircons anchor chronology of lunar magma ocean. Geochem. Persp. Let. 27, 49–53 (2023).

    Article 

    Google Scholar
     

  • Barboni, M. et al. High-precision U–Pb zircon dating identifies a major magmatic event on the Moon at 4.338 Ga. Sci. Adv. 10, eadn9871 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuk, M., Hamilton, D. P., Lock, S. J. & Stewart, S. T. Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth. Nature 539, 402–406 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuyama, I., Trinh, A. & Keane, J. T. The lunar fossil figure in a Cassini state. Planet. Sci. J. 2, 232 (2021).

    Article 

    Google Scholar
     

  • Woo, J. M. Y., Nesvorný, D., Scora, J. & Morbidelli, A. Terrestrial planet formation from a ring: long-term simulations accounting for the giant planet instability. Icarus 417, 116109 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nesvorný, D. et al. Early bombardment of the moon: connecting the lunar crater record to the terrestrial planet formation. Icarus 399, 115545 (2023).

    Article 

    Google Scholar
     

  • Day, J. M. D. & Walker, R. J. Highly siderophile element depletion in the Moon. Earth Planet. Sci. Lett. 423, 114–124 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warren, P. H. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. Lett. 13, 201–240 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Borg, L. E. & Carlson, R. W. The evolving chronology of Moon formation. Annu. Rev. Earth Planet. Sci. 51, 25–52 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maurice, M., Tosi, N., Schwinger, S., Breuer, D. & Kleine, T. A long-lived magma ocean on a young Moon. Sci. Adv. 6, eaba8949 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacobson, S. A. et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mezger, K., Maltese, A. & Vollstaedt, H. Accretion and differentiation of early planetary bodies as recorded in the composition of the silicate Earth. Icarus 365, 114497 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Thiemens, M. M., Sprung, P., Fonseca, R. O. C., Leitzke, F. P. & Münker, C. Early Moon formation inferred from hafnium–tungsten systematics. Nat. Geosci. 12, 696–700 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borg, L. E., Brennecka, G. A. & Kruijer, T. S. The origin of volatile elements in the Earth–Moon system. Proc. Natl Acad. Sci. USA 119, e2115726119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruijer, T. S., Archer, G. J. & Kleine, T. No 182W evidence for early Moon formation. Nat. Geosci. https://doi.org/10.1038/s41561-021-00820-2 (2021).

  • Garrick-Bethell, I., Perera, V., Nimmo, F. & Zuber, M. T. The tidal-rotational shape of the Moon and evidence for polar wander. Nature 512, 181–184 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Reilly, T. C. & Davies, G. F. Magma transport of heat on Io: a mechanism allowing a thick lithosphere. Geophys. Res. Lett. 8, 313–316 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Spencer, D. C., Katz, R. F. & Hewitt, I. J. Tidal controls on the lithospheric thickness and topography of Io from magmatic segregation and volcanism modelling. Icarus 359, 114352 (2021).

    Article 

    Google Scholar
     

  • Miyazaki, Y. & Stevenson, D. J. A subsurface magma ocean on Io: exploring the steady state of partially molten planetary bodies. Planet. Sci. J. 3, 256 (2022).

    Article 

    Google Scholar
     

  • Cuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, Z., Wisdom, J. & Elkins-Tanton, L. Coupled orbital-thermal evolution of the early Earth–Moon system with a fast-spinning Earth. Icarus 281, 90–102 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Rufu, R. & Canup, R. M. Tidal evolution of the evection resonance/quasi-resonance and the angular momentum of the Earth–Moon system. J. Geophys. Res. Planets 125, e2019JE006312 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ćuk, M., Lock, S. J., Stewart, S. T. & Hamilton, D. P. Tidal evolution of the Earth–Moon system with a high initial obliquity. Planet. Sci. J. 2, 147 (2021).

    Article 

    Google Scholar
     

  • Siegler, M. A., Bills, B. G. & Paige, D. A. Effects of orbital evolution on lunar ice stability. J. Geophys. Res. Planets 116, E03010 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Downey, B. G., Nimmo, F. & Matsuyama, I. The thermal–orbital evolution of the Earth–Moon system with a subsurface magma ocean and fossil figure. Icarus 389, 115257 (2023).

    Article 

    Google Scholar
     

  • Tian, Z. & Wisdom, J. Vertical angular momentum constraint on lunar formation and orbital history. Proc. Natl Acad. Sci. USA 117, 15460–15464 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veeder, G. J., Matson, D. L., Johnson, T. V., Blaney, D. L. & Goguen, J. D. Io’s heat flow from infrared radiometry: 1983–1993. J. Geophys. Res. 99, 17095–17162 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Wilson, L. & Head, J. W. Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (part 1: theory). Icarus 283, 146–175 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Brandon, A. D. et al. Re-evaluating Nd-142/Nd-144 in lunar mare basalts with implications for the early evolution and bulk Sm/Nd of the Moon. Geochim. Cosmochim. Acta 73, 6421–6445 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shearer, C. K. et al. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Longhi, J. Experimental petrology and petrogenesis of mare volcanics. Geochim. Cosmochim. Acta 56, 2235–2251 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Borg, L. E., Gaffney, A. M. & Shearer, C. K. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit. Planet. Sci. 50, 715–732 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Whitaker, E. A. The lunar Procellarum Basin. In Multi-ring Basins: Formation and Evolution; Proc. Lunar and Planetary Science Conference 105–111 (Pergamon Press, 1981).

  • Garrick-Bethell, I., Wisdom, J. & Zuber, M. T. Evidence for a past high-eccentricity lunar orbit. Science 313, 652–655 (2006).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Miljković, K. et al. Large impact cratering during lunar magma ocean solidification. Nat. Commun. 12, 5433 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marchi, S., Canup, R. M. & Walker, R. J. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11, 77–81 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, M.-H. et al. Reconstructing the late accretion history of the Moon. Nature 571, 226–229 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zahnle, K. J., Lupu, R., Dobrovolskis, A. & Sleep, N. H. The tethered Moon. Earth Planet. Sci. Lett. 427, 74–82 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Korenaga, J. Rapid solidification of Earth’s magma ocean limits early lunar recession. Icarus 400, 115564 (2023).

    Article 

    Google Scholar
     

  • Ray, R. D., Eanes, R. J. & Chao, B. F. Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry. Nature 381, 595–597 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lainey, V., Arlot, J.-E., Karatekin, Ö. & van Hoolst, T. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966).

    Article 
    ADS 

    Google Scholar
     

  • Farhat, M., Auclair-Desrotour, P., Boué, G. & Laskar, J. The resonant tidal evolution of the Earth–Moon distance. Astron. Astrophys. 665, L1 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kleine, T. & Walker, R. J. Tungsten isotopes in planets. Ann. Rev. Earth Planet. Sci. 45, 389–417 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Salmon, J. & Canup, R. M. Lunar accretion from a Roche-interior fluid disk. Astrophys. J. 760, 83 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Watts, A. B. Isostasy and Flexure of the Lithosphere (Cambridge Univ. Press, 2001).

  • Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, W. B., Simon, J. I. & Webb, A. A. G. Heat-pipe planets. Earth Planet. Sci. Lett. 474, 13–19 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids (Oxford Univ. Press, 1986).

  • Cherniak, D. J. & Watson, E. B. Pb diffusion in zircon. Chem. Geol. 172, 5–24 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meyer, J., Elkins-Tanton, L. & Wisdom, J. Coupled thermal–orbital evolution of the early Moon. Icarus 208, 1–10 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Murray, C. D. & Dermott, S. F. Solar System Dynamics (Cambridge Univ. Press, 2000); https://doi.org/10.1017/CBO9781139174817.

  • Citron, R. I., Smith, D. E., Stewart, S. T., Hood, L. L. & Zuber, M. T. The South Pole–Aitken Basin: constraints on impact excavation, melt, and ejecta. Geophys. Res. Lett. 51, e2024GL110034 (2024).

    Article 

    Google Scholar
     

  • Jones, M. J. et al. A South Pole–Aitken impact origin of the lunar compositional asymmetry. Sci. Adv. 8, eabm8475 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snape, J. F. et al. Ancient volcanism on the Moon: insights from Pb isotopes in the MIL 13317 and Kalahari 009 lunar meteorites. Earth Planet. Sci. Lett. 502, 84–95 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, 1989).

  • Croft, S. K. Cratering flow fields: implications for the excavation and transient expansion stages of crater formation. Lunar Planet. Sci. Conf. Proc. 3, 2347–2378 (1980).

    ADS 

    Google Scholar
     

  • Barnhart, C. J. & Nimmo, F. Role of impact excavation in distributing clays over Noachian surfaces. J. Geophys. Res. Planets 116, E01009 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zahnle, K., Schenk, P., Levison, H. & Dones, L. Cratering rates in the outer Solar System. Icarus 163, 263–289 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Robbins, S. J. A new global database of lunar impact craters >1–2 km: 1. Crater locations and sizes, comparisons with published databases, and global analysis. J. Geophys. Res. Planets 124, 871–892 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Potter, R. W. K., Collins, G. S., Kiefer, W. S., McGovern, P. J. & Kring, D. A. Constraining the size of the South Pole–Aitken Basin impact. Icarus 220, 730–743 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Ganguly, J. & Tirone, M. Relationship between cooling rate and cooling age of a mineral: theory and applications to meteorites. Meteorit. Planet. Sci. 36, 167–175 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *