IPCC Working Group II. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2023),
Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).
Peng, L., Searchinger, T. D., Zionts, J. & Waite, R. The carbon costs of global wood harvests Nature 620, 110–115 (2023).
NOAA. Monthly Average Mauna Loa CO2. Trends in CO2, CH4, N2O, SF6 (Global Monitoring Laboratory, accessed 15 May 2024); https://gml.noaa.gov/ccgg/trends/.
Nabuurs, G.-J. et al. in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) Ch. 7 (Cambridge Univ. Press, 2022).
McKay, D. I. A. et al. Exceeding 1.5°C global warming could trigger multiple climate tipping points Science 377, eabn7950 (2022).
United Nations/Framework Convention on Climate Change. Adoption of the Paris Agreement. FCCC/CP/2015/L.9/Rev.1 (United Nations, 2015).
Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).
IPCC Working Group I. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Walker, W. S. et al. The global potential for increased storage of carbon on land. Proc. Natl Acad. Sci. USA 119, e2111312119 (2022).
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
Araza, A. et al. Past decade above-ground biomass change comparisons from four multi-temporal global maps. Int. J. Appl. Earth Obs. Geoinf. 118, 103274 (2023).
Suarez, D. R. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 25, 3609–3624 (2019).
IPCC. Climate Change: The IPCC 1990 and 1992 Assessments. https://www.ipcc.ch/site/assets/uploads/2018/05/ipcc_90_92_assessments_far_full_report.pdf (1992).
Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 112, 436–441 (2014).
Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).
Pan, Y. et al. Contrasting responses of woody and grassland ecosystems to increased CO2 as water supply varies. Nat. Ecol. Evol. 6, 315–323 (2022).
Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2021).
Shvetsov, E. G., Kukavskaya, E. A., Shestakova, T. A., Laflamme, J. & Rogers, B. M. Increasing fire and logging disturbances in Siberian boreal forests: a case study of the Angara region. Environ. Res. Lett. 16, 115007 (2021).
Fan, L. et al. Siberian carbon sink reduced by forest disturbances. Nat. Geosci. 16, 56–62 (2023).
Wang, J. A., Baccini, A., Farina, M., Randerson, J. T. & Friedl, M. A. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nat. Clim. Change 11, 435–441 (2021).
Kurz, W. A. et al. Carbon in Canada’s boreal forest — a synthesis. Environ. Rev. 21, 260–292 (2013).
Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).
Gutman, G. & Radeloff, V. (eds) Land-cover and Land-use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991 (Springer, 2017).
Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
Kauppi, P. E. et al. Managing existing forests can mitigate climate change. For. Ecol. Manage. 513, 120186 (2022).
Henttonen, H. M., Nöjd, P. & Mäkinen, H. Environment-induced growth changes in forests of Finland revisited – a follow-up using an extended data set from the 1960s to the 2020s. For. Ecol. Manage. 551, 121515 (2024).
Korosuo, A. et al. The role of forests in the EU climate policy: are we on the right track? Carbon Balance Manage. 18, 15 (2023).
Yang, C. et al. Updated estimation of forest biomass carbon pools in China, 1977–2018. Biogeosciences 19, 2989–2999 (2022).
Domke, G. C. et al. in Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (eds Cavallaro, N. et al.) Ch. 9 (U.S. Global Change Research Program, 2018). https://doi.org/10.7930/SOCCR2.2018.Ch9.
Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).
Hlásny, T. et al. Living With Bark Beetles: Impacts, Outlook and Management Options. From Science to Policy 8 (European Forest Institute, 2019).
Salomón, R. L. et al. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nat. Commun. 13, 28 (2022).
Forestry Agency, Japan. State of Japan’s Forests and Forest Management: 3rd Country Report of Japan to the Montreal Process https://www.maff.go.jp/e/policies/forestry/attach/pdf/index-8.pdf (2019).
Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).
IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (2019).
Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
IPCC. Climate Change 2014–Impacts, Adaptation and Vulnerability. Part B: Regional Aspects: Working Group II contribution to the IPCC Fifth Assessment Report (eds Barros, V. R. et al.) (Cambridge Univ. Press, 2015); https://doi.org/10.1017/CBO9781107415386
Phillips, C. A. et al. Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management. Sci. Adv. 8, eabl7161 (2022).
Law, B. E. et al. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc. Natl. Acad. Sci. USA 115, 3663–3668 (2018).
Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Arneth, A. et al. Restoring degraded lands. Ann. Rev. Environ. Resour. 46, 569–599 (2021).
Sasaki, N. et al. Sustainable management of tropical forests can reduce carbon emissions and stabilize timber production. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2016.00050 (2016).
Hurteau, M. D., North, M. P., Koch, G. W. & Hungate, B. A. Managing for disturbance stabilizes forest carbon. Proc. Natl. Acad. Sci. USA 116, 10193–10195 (2019).
Thom, D. et al. The climate sensitivity of carbon, timber, and species richness covaries with forest age in boreal–temperate North America. Global Change Biol. 25, 2446–2458 (2019).
Birdsey, R. et al. Climate, economic, and environmental impacts of producing wood for bioenergy. Environ. Res. Lett. 13, 050201 (2018).
Food and Agriculture Organization Global Forest Resource Assessment 2020: Main Report https://doi.org/10.4060/ca9825en (2020).
Murdiyarso, D., Kauffman, J. B. & Verchot, L. Climate change mitigation strategies should include tropical wetlands. Carbon Manage. 4, 491–499 (2014).
IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry (eds Penman, J. et al.) http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html (Institute for Global Environmental Strategies, 2003).
IPCC. IPCC Guidelines for National Greenhouse Gas Inventories http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (Institute for Global Environmental Strategies, 2006).
Houghton, R. A. & Castanho, A. Annual emissions of carbon from land use, land-use change, and forestry from 1850 to 2020. Earth Syst. Sci. Data 15, 2025–2054 (2023).
Houghton, R. A. Terrestrial fluxes of carbon in GCP carbon budgets. Global Change Biol. https://doi.org/10.1111/gcb.1505 (2020).
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
King, A. W. et al. (eds) The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle (National Oceanic and Atmospheric Administration/National Climatic Data Center, 2007).
Lang, N. et al. Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles. Remote Sens. Environ. 268, 112760 (2022).
Bastos, A. et al. Sources of uncertainty in regional and global terrestrial CO2 exchange estimates. Global Biogeochem. Cycles 34, e2019GB006393 (2020).
Ciais, P. et al. Definitions and methods to estimate regional land carbon fluxes for the second phase of the Regional Carbon Cycle Assessment and Processes Project (RECCAP-II). Geosci. Model Dev. 15, 1289–1316 (2022).
O’Sullivan, M. et al. Process-oriented analysis of dominant sources of uncertainty in the land carbon sink. Nat. Commun. 13, 4781 (2022).
Fatichi, S., Pappas, C., Zscheischler, J. & Leuzinger, S. Modelling carbon sources and sinks in terrestrial vegetation. New Phytol. 221, 652–668 (2019).