• IPCC Working Group II. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2023),

  • Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).

    Article 

    Google Scholar
     

  • Peng, L., Searchinger, T. D., Zionts, J. & Waite, R. The carbon costs of global wood harvests Nature 620, 110–115 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • NOAA. Monthly Average Mauna Loa CO2. Trends in CO2, CH4, N2O, SF6 (Global Monitoring Laboratory, accessed 15 May 2024); https://gml.noaa.gov/ccgg/trends/.

  • Nabuurs, G.-J. et al. in Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) Ch. 7 (Cambridge Univ. Press, 2022).

  • McKay, D. I. A. et al. Exceeding 1.5°C global warming could trigger multiple climate tipping points Science 377, eabn7950 (2022).

    Article 
    CAS 

    Google Scholar
     

  • United Nations/Framework Convention on Climate Change. Adoption of the Paris Agreement. FCCC/CP/2015/L.9/Rev.1 (United Nations, 2015).

  • Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    Article 

    Google Scholar
     

  • IPCC Working Group I. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Walker, W. S. et al. The global potential for increased storage of carbon on land. Proc. Natl Acad. Sci. USA 119, e2111312119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Araza, A. et al. Past decade above-ground biomass change comparisons from four multi-temporal global maps. Int. J. Appl. Earth Obs. Geoinf. 118, 103274 (2023).


    Google Scholar
     

  • Suarez, D. R. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 25, 3609–3624 (2019).

    Article 

    Google Scholar
     

  • IPCC. Climate Change: The IPCC 1990 and 1992 Assessments. https://www.ipcc.ch/site/assets/uploads/2018/05/ipcc_90_92_assessments_far_full_report.pdf (1992).

  • Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl. Acad. Sci. USA 112, 436–441 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Article 

    Google Scholar
     

  • Pan, Y. et al. Contrasting responses of woody and grassland ecosystems to increased CO2 as water supply varies. Nat. Ecol. Evol. 6, 315–323 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shvetsov, E. G., Kukavskaya, E. A., Shestakova, T. A., Laflamme, J. & Rogers, B. M. Increasing fire and logging disturbances in Siberian boreal forests: a case study of the Angara region. Environ. Res. Lett. 16, 115007 (2021).

    Article 

    Google Scholar
     

  • Fan, L. et al. Siberian carbon sink reduced by forest disturbances. Nat. Geosci. 16, 56–62 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. A., Baccini, A., Farina, M., Randerson, J. T. & Friedl, M. A. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nat. Clim. Change 11, 435–441 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kurz, W. A. et al. Carbon in Canada’s boreal forest — a synthesis. Environ. Rev. 21, 260–292 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article 

    Google Scholar
     

  • Gutman, G. & Radeloff, V. (eds) Land-cover and Land-use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991 (Springer, 2017).

  • Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kauppi, P. E. et al. Managing existing forests can mitigate climate change. For. Ecol. Manage. 513, 120186 (2022).

  • Henttonen, H. M., Nöjd, P. & Mäkinen, H. Environment-induced growth changes in forests of Finland revisited – a follow-up using an extended data set from the 1960s to the 2020s. For. Ecol. Manage. 551, 121515 (2024).

  • Korosuo, A. et al. The role of forests in the EU climate policy: are we on the right track? Carbon Balance Manage. 18, 15 (2023).

    Article 

    Google Scholar
     

  • Yang, C. et al. Updated estimation of forest biomass carbon pools in China, 1977–2018. Biogeosciences 19, 2989–2999 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Domke, G. C. et al. in Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (eds Cavallaro, N. et al.) Ch. 9 (U.S. Global Change Research Program, 2018). https://doi.org/10.7930/SOCCR2.2018.Ch9.

  • Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hlásny, T. et al. Living With Bark Beetles: Impacts, Outlook and Management Options. From Science to Policy 8 (European Forest Institute, 2019).

  • Salomón, R. L. et al. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nat. Commun. 13, 28 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forestry Agency, Japan. State of Japan’s Forests and Forest Management: 3rd Country Report of Japan to the Montreal Process https://www.maff.go.jp/e/policies/forestry/attach/pdf/index-8.pdf (2019).

  • Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (2019).

  • Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • IPCC. Climate Change 2014–Impacts, Adaptation and Vulnerability. Part B: Regional Aspects: Working Group II contribution to the IPCC Fifth Assessment Report (eds Barros, V. R. et al.) (Cambridge Univ. Press, 2015); https://doi.org/10.1017/CBO9781107415386

  • Phillips, C. A. et al. Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management. Sci. Adv. 8, eabl7161 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Law, B. E. et al. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc. Natl. Acad. Sci. USA 115, 3663–3668 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article 

    Google Scholar
     

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arneth, A. et al. Restoring degraded lands. Ann. Rev. Environ. Resour. 46, 569–599 (2021).

    Article 

    Google Scholar
     

  • Sasaki, N. et al. Sustainable management of tropical forests can reduce carbon emissions and stabilize timber production. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2016.00050 (2016).

    Article 

    Google Scholar
     

  • Hurteau, M. D., North, M. P., Koch, G. W. & Hungate, B. A. Managing for disturbance stabilizes forest carbon. Proc. Natl. Acad. Sci. USA 116, 10193–10195 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thom, D. et al. The climate sensitivity of carbon, timber, and species richness covaries with forest age in boreal–temperate North America. Global Change Biol. 25, 2446–2458 (2019).

    Article 

    Google Scholar
     

  • Birdsey, R. et al. Climate, economic, and environmental impacts of producing wood for bioenergy. Environ. Res. Lett. 13, 050201 (2018).

    Article 

    Google Scholar
     

  • Food and Agriculture Organization Global Forest Resource Assessment 2020: Main Report https://doi.org/10.4060/ca9825en (2020).

  • Murdiyarso, D., Kauffman, J. B. & Verchot, L. Climate change mitigation strategies should include tropical wetlands. Carbon Manage. 4, 491–499 (2014).

    Article 
    CAS 

    Google Scholar
     

  • IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry (eds Penman, J. et al.) http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.html (Institute for Global Environmental Strategies, 2003).

  • IPCC. IPCC Guidelines for National Greenhouse Gas Inventories http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (Institute for Global Environmental Strategies, 2006).

  • Houghton, R. A. & Castanho, A. Annual emissions of carbon from land use, land-use change, and forestry from 1850 to 2020. Earth Syst. Sci. Data 15, 2025–2054 (2023).

    Article 

    Google Scholar
     

  • Houghton, R. A. Terrestrial fluxes of carbon in GCP carbon budgets. Global Change Biol. https://doi.org/10.1111/gcb.1505 (2020).

    Article 

    Google Scholar
     

  • Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • King, A. W. et al. (eds) The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle (National Oceanic and Atmospheric Administration/National Climatic Data Center, 2007).

  • Lang, N. et al. Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles. Remote Sens. Environ. 268, 112760 (2022).

    Article 

    Google Scholar
     

  • Bastos, A. et al. Sources of uncertainty in regional and global terrestrial CO2 exchange estimates. Global Biogeochem. Cycles 34, e2019GB006393 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ciais, P. et al. Definitions and methods to estimate regional land carbon fluxes for the second phase of the Regional Carbon Cycle Assessment and Processes Project (RECCAP-II). Geosci. Model Dev. 15, 1289–1316 (2022).

    Article 
    CAS 

    Google Scholar
     

  • O’Sullivan, M. et al. Process-oriented analysis of dominant sources of uncertainty in the land carbon sink. Nat. Commun. 13, 4781 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fatichi, S., Pappas, C., Zscheischler, J. & Leuzinger, S. Modelling carbon sources and sinks in terrestrial vegetation. New Phytol. 221, 652–668 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *