• Ficetola, G. F. et al. Dynamics of ecological communities following current retreat of glaciers. Annu. Rev. Ecol. Evol. Syst. 52, 405–426 (2021).

    Article 

    Google Scholar
     

  • Pothula, S. K. & Adams, B. J. Community assembly in the wake of glacial retreat: a meta-analysis. Glob. Chang. Biol. 28, 6973–6991 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bosson, J. B. et al. Future emergence of new ecosystems caused by glacial retreat. Nature 620, 562–569 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rounce, D. R. et al. Global glacier change in the 21st century: every increase in temperature matters. Science 379, 78–83 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmer, A., Beach, T., Klein, J. A. & Recharte Bullard, J. The need for stewardship of lands exposed by deglaciation from climate change. Wiley Interdiscip. Rev. Clim. Change 13, e753 (2022).

    Article 

    Google Scholar
     

  • Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford Univ. Press, 2018).

  • Hock, R. et al. GlacierMIP — a model intercomparison of global-scale glacier mass-balance models and projections. J. Glaciol. 65, 453–467 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Körner, C. Mountain biodiversity, its causes and function. Ambio 33, 11–17 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Palomo, I. Climate change impacts on ecosystem services in high mountain areas: a literature review. Mt. Res. Dev. 37, 179–187 (2017).

    Article 

    Google Scholar
     

  • La Farge, C., Williams, K. H. & England, J. H. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proc. Natl Acad. Sci. USA 110, 9839–9844 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donhauser, J. & Frey, B. Alpine soil microbial ecology in a changing world. FEMS Microbiol. Ecol. 94, fiy099 (2018).

  • Hågvar, S. et al. Ecosystem birth near melting glaciers: a review on the pioneer role of ground-dwelling arthropods. Insects 11, 644 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, J. W. et al. Mining stakes claim on salmon futures as glaciers retreat. Science 382, 887–889 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Poorter, L. et al. Multidimensional tropical forest recovery. Science 374, 1370–1376 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98, 725–736 (2010).

    Article 

    Google Scholar
     

  • Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).

    Article 

    Google Scholar
     

  • Hanusch, M., He, X., Ruiz-Hernández, V. & Junker, R. R. Succession comprises a sequence of threshold-induced community assembly processes towards multidiversity. Commun. Biol. 5, 424 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pulsford, S. A., Lindenmayer, D. B. & Driscoll, D. A. A succession of theories: purging redundancy from disturbance theory. Biol. Rev. 91, 148–167 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rosero, P. et al. Multi-taxa colonisation along the foreland of a vanishing equatorial glacier. Ecography 44, 1010–1021 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fan, K. et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nat. Ecol. Evol. 7, 113–126 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Khedim, N. et al. Topsoil organic matter build-up in glacier forelands around the world. Glob. Chang. Biol. 27, 1662–1677 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lutz, S. et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat. Commun. 7, 11968 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rime, T., Hartmann, M. & Frey, B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J. 10, 1625–1641 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmer, A. et al. Soil temperature and local initial conditions drive carbon and nitrogen build-up in young proglacial soils in the Tropical Andes and European Alps. Catena 235, 107645 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bardgett, R. D. et al. Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol. Lett. 3, 487–490 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter, B. D., Roering, J. J., Silva, L. C. R. & Moreland, K. C. Geomorphic controls on the abundance and persistence of soil organic carbon pools in erosional landscapes. Nat. Geosci. 17, 151–157 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Draebing, D., Mayer, T., Jacobs, B. & McColl, S. T. Alpine rockwall erosion patterns follow elevation-dependent climate trajectories. Commun. Earth Environ. 3, 21 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Erhart, H. La Génèse Des Sols En Tant Que Phénomène Géologique: Esquisse d’une Théorie Géologique et Géochimique: Biostasie et Rhexistasie (Masson, 1951).

  • Salazar, A., Warshan, D., Vasquez-Mejia, C. & Andrésson, Ó. S. Environmental change alters nitrogen fixation rates and microbial parameters in a subarctic biological soil crust. Oikos 2022, e09239 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sepp, S.-K. et al. Global diversity and distribution of nitrogen-fixing bacteria in the soil. Front. Plant Sci. 14, 1100235 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Angert, A. L., Huxman, T. E., Chesson, P. & Venable, D. L. Functional tradeoffs determine species coexistence via the storage effect. Proc. Natl Acad. Sci. USA 106, 11641–11645 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peyre, G. et al. The fate of páramo plant assemblages in the sky islands of the northern Andes. J. Veg. Sci. 31, 967–980 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Vellend, M. et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohlmann, M. et al. Mapping the imprint of biotic interactions on β-diversity. Ecol. Lett. 21, 1660–1669 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Tscherko, D., Hammesfahr, U., Zeltner, G., Kandeler, E. & Böcker, R. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic Appl. Ecol. 6, 367–383 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Losapio, G. et al. Network motifs involving both competition and facilitation predict biodiversity in alpine plant communities. Proc. Natl Acad. Sci. USA 118, e2005759118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sint, D., Kaufmann, R., Mayer, R. & Traugott, M. Resolving the predator first paradox: arthropod predator food webs in pioneer sites of glacier forelands. Mol. Ecol. 28, 336–347 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bennett, J. A. et al. Plant–soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Calderón-Sanou, I. et al. Cascading effects of moth outbreaks on subarctic soil food webs. Sci. Rep. 11, 15054 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Houlton, B. Z., Wang, Y.-P., Vitousek, P. M. & Field, C. B. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454, 327–330 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cantera, I. et al. The importance of species addition ‘versus’ replacement varies over succession in plant communities after glacier retreat. Nat. Plants 10, 256–267 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Pugnaire, F. I. et al. Climate change effects on plant–soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci. Adv. 5, eaaz1834 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerra, C. A. et al. Global hotspots for soil nature conservation. Nature 610, 693–698 (2022).

  • Sytsma, M. L. T., Lewis, T., Bakker, J. D. & Prugh, L. R. Successional patterns of terrestrial wildlife following deglaciation. J. Anim. Ecol. 92, 723–737 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Butler, D. R., Anzah, F., Goff, P. D. & Villa, J. Zoogeomorphology and resilience theory. Geomorphology 305, 154–162 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marta, S. et al. The retreat of mountain glaciers since the Little Ice Age: a spatially explicit database. Data 6, 107 (2021).

    Article 

    Google Scholar
     

  • Dickie, I. A. et al. Towards robust and repeatable sampling methods in eDNA-based studies. Mol. Ecol. Resour. 18, 940–952 (2018).

    Article 

    Google Scholar
     

  • Guerrieri, A. et al. Metabarcoding data reveal vertical multitaxa variation in topsoil communities during the colonization of deglaciated forelands. Mol. Ecol. https://doi.org/10.1111/mec.16669 (2023).

  • Rime, T. et al. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol. Ecol. 24, 1091–1108 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guerrieri, A. et al. Effects of soil preservation for biodiversity monitoring using environmental DNA. Mol. Ecol. 30, 3313–3325 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bray, R. H. & Kurtz, L. T. Determination of total organic and available forms of phosphorus in soils. Soil Sci. 59, 39–46 (1945).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Olsen, S. R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (US Department of Agriculture, 1954).

  • Marta, S. et al. Heterogeneous changes of soil microclimate in high mountains and glacier forelands. Nat. Commun. https://doi.org/10.21203/rs.3.rs-2017904/v1 (2023).

  • Smith, P. & Metcalfe, P. dynatop: An implementation of dynamic TOPMODEL hydrological model in R. GitHub https://github.com/waternumbers/dynatop (2022).

  • Paruelo, J. M., Epstein, H. E., Lauenroth, W. K. & Burke, I. C. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78, 953–958 (1997).

    Article 

    Google Scholar
     

  • Rumpf, S. B. et al. From white to green: snow cover loss and increased vegetation productivity in the European Alps. Science 376, 1119–1122 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lillesand, T., Kiefer, R. W. & Chipman, J. Remote Sensing and Image Interpretation 7th edn (Wiley, 2015).

  • Liu, Y. et al. Evaluation of consistency among three NDVI products applied to High Mountain Asia in 2000–2015. Remote Sens. Environ. 269, 112821 (2022).

    Article 

    Google Scholar
     

  • Aybar, C. et al. rgee: R bindings for calling the ‘Earth Engine’ API. GitHub https://github.com/google/earthengine-api (2022).

  • Ficetola, G. F. & Taberlet, P. Towards exhaustive community ecology via DNA metabarcoding. Mol. Ecol. https://doi.org/10.1111/mec.16881.

  • Guardiola, M. et al. Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons. PLoS ONE 10, e0139633 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moll, J. & Hoppe, B. Evaluation of primers for the detection of deadwood-inhabiting archaea via amplicon sequencing. PeerJ 10, e14567 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hathaway, J. J. M., Moser, D. P., Blank, J. G. & Northup, D. E. A comparison of primers in 16S rRNA gene surveys of Bacteria and Archaea from volcanic caves. Geomicrobiol. J. 38, 741–754 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Epp, L. S. et al. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol. Ecol. 21, 1821–1833 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Janssen, P. et al. Present conditions may mediate the legacy effect of past land-use changes on species richness and composition of above- and below-ground assemblages. J. Ecol. 106, 306–318 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Bienert, F. et al. Tracking earthworm communities from soil DNA. Mol. Ecol. 21, 2017–2030 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lunghi, E. et al. Environmental DNA of insects and springtails from caves reveals complex processes of eDNA transfer in soils. Sci. Total Environ. 826, 154022 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coissac, E. OligoTag: a program for designing sets of tags for next-generation sequencing of multiplexed samples. Methods Mol. Biol. 888, 13–31 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Zinger, L. et al. DNA metabarcoding — need for robust experimental designs to draw sound ecological conclusions. Mol. Ecol. 28, 1857–1862 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, S. P. et al. Scraping the bottom of the barrel: are rare high throughput sequences artifacts? Fungal Ecol. 13, 221–225 (2015).

    Article 

    Google Scholar
     

  • Alberdi, A., Aizpurua, O., Gilbert, M. T. P. & Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2018).

    Article 

    Google Scholar
     

  • Bonin, A., Guerrieri, A. & Ficetola, G. F. Optimal sequence similarity thresholds for clustering of molecular operational taxonomic units in DNA metabarcoding studies. Mol. Ecol. Resour. 23, 368–381 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calderón‐Sanou, I., Münkemüller, T., Boyer, F., Zinger, L. & Thuiller, W. From environmental DNA sequences to ecological conclusions: how strong is the influence of methodological choices? J. Biogeogr. 47, 193–206 (2020).

    Article 

    Google Scholar
     

  • Bálint, M. et al. Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiol. Rev. 40, 686–700 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15, 543–556 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ariza, M. et al. Plant biodiversity assessment through soil eDNA reflects temporal and local diversity. Methods Ecol. Evol. 14, 415–430 (2023).

    Article 

    Google Scholar
     

  • Pansu, J. et al. Long-lasting modification of soil fungal diversity associated with the introduction of rabbits to a remote sub-Antarctic archipelago. Biol. Lett. 11, 20150408 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foucher, A. et al. Persistence of environmental DNA in cultivated soils: implication of this memory effect for reconstructing the dynamics of land use and cover changes. Sci. Rep. 10, 10502 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Malley, M. A., Simpson, A. G. B. & Roger, A. J. The other eukaryotes in light of evolutionary protistology. Biol. Philos. 28, 299–330 (2013).

    Article 

    Google Scholar
     

  • Whittaker, R. H. New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science 163, 150–160 (1969).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Simpson, A. G. B., Slamovits, C. H. & Archibald, J. M. in Handbook of the Protists (eds Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H.) 1–21 (Springer International, 2017).

  • Anthony, M. A., Bender, S. F. & van der Heijden, M. G. A. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zinger, L. et al. Body size determines soil community assembly in a tropical forest. Mol. Ecol. 28, 528–543 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, E. A. & Miyanishi, K. Testing the assumptions of chronosequences in succession. Ecol. Lett. 11, 419–431 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Makoto, K. & Wilson, S. D. New multicentury evidence for dispersal limitation during primary succession. Am. Nat. 187, 804–811 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rydgren, K., Halvorsen, R., Töpper, J. P. & Njøs, J. M. Glacier foreland succession and the fading effect of terrain age. J. Veg. Sci. 25, 1367–1380 (2014).

    Article 

    Google Scholar
     

  • Tampucci, D. et al. Plant and arthropod colonisation of a glacier foreland in a peripheral mountain range. Biodiversity 16, 213–223 (2015).

    Article 

    Google Scholar
     

  • Vater, A. E. & Matthews, J. A. Succession of pitfall-trapped insects and arachnids on eight Norwegian glacier forelands along an altitudinal gradient: patterns and models. Holocene 25, 108–129 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Damgaard, C. A critique of the space-for-time substitution practice in community ecology. Trends Ecol. Evol. 34, 416–421 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, J. et al. BioDeepTime: a database of biodiversity time series for modern and fossil assemblages. Global Ecol. Biogeogr. 32, 1680–1689 (2023).

    Article 

    Google Scholar
     

  • Foster, B. L. & Tilman, D. Dynamic and static views of succession: testing the descriptive power of the chronosequence approach. Plant Ecol. 146, 1–10 (2000).

    Article 

    Google Scholar
     

  • Erschbamer, B., Niederfriniger Schlag, R., Carnicero, P. & Kaufmann, R. Long-term monitoring confirms limitations of recruitment and facilitation and reveals unexpected changes of the successional pathways in a glacier foreland of the Central Austrian Alps. Plant Ecol. 224, 373–386 (2023).

    Article 

    Google Scholar
     

  • Fickert, T. & Grüninger, F. High-speed colonization of bare ground — permanent plot studies on primary succession of plants in recently deglaciated glacier forelands. Land Degrad. Dev. 29, 2668–2680 (2018).

    Article 

    Google Scholar
     

  • Mächler, E., Walser, J.-C. & Altermatt, F. Decision-making and best practices for taxonomy-free environmental DNA metabarcoding in biomonitoring using Hill numbers. Mol. Ecol. 30, 3326–3339 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bürkner, P.-C. brms: An R package for bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 

    Google Scholar
     

  • Ren, Z. & Gao, H. Abundant and rare soil fungi exhibit distinct succession patterns in the forefield of Dongkemadi glacier on the central Qinghai-Tibet Plateau. Sci. Total Environ. 828, 154563 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bjornstad, O. N. & Cai, J. ncf: Spatial covariance functions. CRAN https://doi.org/10.32614/CRAN.package.ncf (2022).

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar
     

  • Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer Nature, 2021).

  • Paulsen, J. & Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Botany 124, 1–12 (2014).

    Article 

    Google Scholar
     

  • Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar
     

  • Delavaux, C. S., Ramos, R. J., Sturmer, S. L. & Bever, J. D. Environmental identification of arbuscular mycorrhizal fungi using the LSU rDNA gene region: an expanded database and improved pipeline. Mycorrhiza 32, 145–153 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delavaux, C. S. et al. Mycorrhizal types influence island biogeography of plants. Commun. Biol. 4, 1128 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bollen, K. A., Harden, J. J., Ray, S. & Zavisca, J. BIC and alternative Bayesian information criteria in the selection of structural equation models. Struct. Equ. Modeling 21, 1–19 (2014).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hertzog, L. R. How robust are structural equation models to model miss-specification? A simulation study. Preprint at arXiv https://doi.org/10.48550/arXiv.1803.06186 (2019).

  • Lin, L.-C., Huang, P.-H. & Weng, L.-J. Selecting path models in SEM: a comparison of model selection criteria. Struct. Equ. Modeling 24, 855–869 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Oberski, D. lavaan.survey: An R package for complex survey analysis of structural equation models. J. Stat. Softw. 57, 1–27 (2014).

    Article 

    Google Scholar
     

  • Shipley, B. & Douma, J. C. Generalized AIC and chi-squared statistics for path models consistent with directed acyclic graphs. Ecology 101, e02960 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Douma, J. C. & Shipley, B. Testing model fit in path models with dependent errors given non-normality, non-linearity and hierarchical data. Struct. Equ. Modeling 30, 222–233 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Westland, J. C. Structural Equation Models: From Paths to Networks (Springer, 2020).

  • Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Lichstein, J., Simons, T., Shriner, S. & Franzreb, K. Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72, 445–463 (2002).

    Article 

    Google Scholar
     

  • Roser, L. G., Ferreyra, L. I., Saidman, B. O. & Vilardi, J. C. EcoGenetics: an R package for the management and exploratory analysis of spatial data in landscape genetics. Mol. Ecol. Resour. 17, e241–e250 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference with R (Cambridge Univ. Press, 2016).

  • Legendre, P., Lapointe, F.-J. & Casgrain, P. Modeling brain evolution from behavior: a permutational regression approach. Evolution 48, 1487–1499 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Martinez-Almoyna, C. et al. Multi-trophic β-diversity mediates the effect of environmental gradients on the turnover of multiple ecosystem functions. Funct. Ecol. 33, 2053–2064 (2019).

    Article 

    Google Scholar
     

  • Lichstein, J. W. Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *