• Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condens. Matter 64, 189–193 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, F. & Senthil, T. Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Phys. Rev. Lett. 106, 136402 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kim, Y. K., Sung, N. H., Denlinger, J. D. & Kim, B. J. Observation of a d-wave gap in electron-doped Sr2IrO4. Nat. Phys. 12, 37–41 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Anisimov, V. I., Bukhvalov, D. & Rice, T. M. Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lee, K.-W. & Pickett, W. E. Infnite-layer LaNiO2: Ni1+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Chaloupka, J. & Khaliullin, G. Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys. Rev. Lett. 100, 016404 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8. Proc. Natl Acad. Sci. USA 113, 8945–8950 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lechermann, F. Late transition metal oxides with infinite-layer structure: nickelates versus cuprates. Phys. Rev. B 101, 081110 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, S. et al. Phase diagram and superconducting dome of infinite-layer Nd1−xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater. 21, 160–164 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, X. et al. Critical role of hydrogen for superconductivity in nickelates. Nature 615, 50–55 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. High-temperature superconductivity with zero-resistance and strange metal behavior in La3Ni2O7−δ. Preprint at arxiv.org/abs/2307.14819 (2023).

  • Zhou, Y. et al. Evidence of filamentary superconductivity in pressurized La3Ni2O7. Preprint at arxiv.org/abs/2311.12361 (2023).

  • Wang, G. et al. Pressure-induced superconductivity in polycrystalline La3Ni2O7−δ. Phys. Rev. X 14, 011040 (2024).

    CAS 

    Google Scholar
     

  • Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Ling, C. D. et al. Neutron diffraction study of La3Ni2O7: structural relationships among n = 1, 2, and 3 phases Lan+1NinO3n+1. J. Solid State Chem. 152, 517–525 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Gu, Y. et al. Effective model and pairing tendency in bilayer Ni-based superconductor La3Ni2O7. Preprint at arxiv.org/abs/2306.07275 (2023).

  • Scott, B. A. et al. Layer dependence of the superconducting transition temperature of HgBa2Can−1CunO2n+2+δ. Physica C 230, 239–245 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kuzemskaya, I. G., Kuzemsky, A. L. & Cheglokov, A. A. Superconducting properties of the family of mercurocuprates and role of layered structure. J. Low-Temp. Phys. 118, 147–152 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Iyo, A. et al. Tc vs n relationship for multilayered high-Tc superconductors. J. Phys. Soc. Jpn. 76, 094711 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Schilling, A., Cantoni, M., Guo, J. D. & Ott, H. R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 56–58 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gao, L. et al. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50, 4260–4263 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chakravarty, S., Kee, H.-Y. & Völker, K. An explanation for a universality of transition temperatures in families of copper oxide superconductors. Nature 428, 53–55 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berg, E., Orgad, D., Kivelson, & Steven, A. Route to high-temperature superconductivity in composite systems. Phys. Rev. B 78, 094509 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Botana, A. S., Pardo, V. & Norman, M. R. Electron doped layered nickelates: spanning the phase diagram of the cuprates. Phys. Rev. Mater. 1, 021801 (2017).

    Article 

    Google Scholar
     

  • Nica, E. M. et al. Theoretical investigation of superconductivity in trilayer square-planar nickelates. Phys. Rev. B 102, 020504 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Cheng, J.-G. et al. Pressure effect on the structural transition and suppression of the high-spin state in the triple-layer T’-La4Ni3O8. Phys. Rev. Lett. 108, 236403 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. High oxygen pressure floating zone growth and crystal structure of the metallic nickelates R4Ni3O10 (R = La, Pr). Phys. Rev. Mater. 4, 083402 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Fermiology and electron dynamics of trilayer nickelate La4Ni3O10. Nat. Commun. 8, 704 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Intertwined density waves in a metallic nickelate. Nat. Commun. 11, 6003 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, W. Z. et al. Origin of the spin density wave instability in AFe2As2 (A = Ba, Sr) as revealed by optical spectroscopy. Phys. Rev. Lett. 101, 257005 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Structural transition, electric transport, and electronic structures in the compressed trilayer nickelate La4Ni3O10. Sci. China-Phys. Mech. Astron. 67, 117403 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yuan, N. et al. High-pressure crystal growth and investigation of the metal-to-metal transition of Ruddlesden–Popper trilayer nickelates La4Ni3O10. J. Cryst. Growth 627, 127511 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Wu, G., Neumeier, J. J. & Hundley, M. F. Magnetic susceptibility, heat capacity, and pressure dependence of the electrical resistivity of La3Ni2O7 and La4Ni3O10. Phys. Rev. B 63, 245120 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Gurvitch, M. & Fiory, A. T. Resistivity of La1.825Sr0.175CuO4 and YBa2Cu3O7 to 1100 K: absence of saturation and its implications. Phys. Rev. Lett. 59, 1337–1340 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasahara, S. et al. Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2 (As41-xPx)2 superconductors. Phys. Rev. B 81, 184519 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Yuan, J. et al. Scaling of the strange-metal scattering in unconventional superconductors. Nature 602, 431–436 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, X. et al. Interplay between superconductivity and the strange-metal state in FeSe. Nat. Phys. 19, 365–371 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, K. et al. Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2. Nature 619, 288–292 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Orbital-dependent electron correlation in double-layer nickelate La3Ni2O7. Preprint at arxiv.org/abs/2309.01148 (2023).

  • Wang, F. et al. The electron pairing of KxFe2−ySe2. Europhys. Lett. 93, 57003 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Luo, X. et al. Electronic origin of high superconducting critical temperature in trilayer cuprates. Nat. Phys. 19, 1841–1847 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, L. et al. Higher superconducting transition temperature by breaking the universal pressure relation. Proc. Natl Acad. Sci. USA 116, 2004–2008 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prozorov, R. & Kogan, V. G. Effective demagnetizing factors of diamagnetic samples of various shapes. Phys. Rev. APP. 10, 014030 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Grissonnanche, G. et al. Direct measurement of the upper critical field in cuprate superconductors. Nat. Commun. 5, 3280 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ando, Y. et al. Resistive upper critical fields and irreversibility lines of optimally doped high-Tc cuprates. Phys. Rev. B 60, 12475 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thompson, J. D., Maley, M. P., Newkirk, L. R. & Bartlett, R. J. High-field properties and scaling in CVD-prepared Nb3Ge. J. Appl. Phys. 50, 977–982 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meier, Q. N. et al. Preempted phonon-mediated superconductivity in the infinite-layer nickelates. Phys. Rev. B 109, 184505 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ouyang, Z., Gao, M. & Lu Z.-Y. Absence of phonon-mediated superconductivity in La3Ni2O7 under pressure. Preprint at arxiv.org/abs/2403.14400 (2024).

  • Leonov, I. V. Electronic structure and magnetic correlations in trilayer nickelate superconductor La4Ni3O10 under pressure. Preprint at arxiv.org/abs/2401.07350 (2024).

  • Tian, P., Ma, H.-T., Ming, X., Zheng, X.-J. & Li, H. Effective model and electron correlations in trilayer nickelate superconductor La4Ni3O10. Preprint at arxiv.org/abs/2402.02351 (2024).

  • Wang, J., Ouyang, Z., He, R.-Q. & Lu, Z.-Y. Non-Fermi liquid and Hund correlation in La4Ni3O10 under high pressure. Phys. Rev. B 109, 165140 (2024).

  • LaBollita, H., Kapeghian, J., Norman, M. R. & Botana, A. S. Electronic structure and magnetic tendencies of trilayer La4Ni3O10 under pressure: Structural transition, molecular orbitals, and layer differentiation. Phys. Rev. B 109, 195151 (2024).

  • Zhang, Y., Lin, L.-F., Moreo, A., Maier, T. A. & Dagotto, E. Prediction of s±-wave superconductivity enhanced by electronic doping in trilayer nickelates La4Ni3O10 under pressure. Preprint at arxiv.org/abs/2402.05285 (2024).

  • Yang, Q.-G., Jiang, K.-Y., Wang, D., Lu, H.-Y. & Wang, Q.-H. Effective model and s±-wave superconductivity in trilayer nickelate La4Ni3O10. Preprint at arxiv.org/html/2402.05447v2 (2024).

  • Lu, C., Pan, Z., Yang, F. & Wu, C. Superconductivity in La4Ni3O10 under pressure. Preprint at arxiv.org/abs/2402.06450 (2024).

  • Zhang, M. et al. Effects of pressure and doping on Ruddlesden-Popper phases Lan+1NinO3n+1. J. Mater. Sci. Technol. 185, 147–154 (2024).

  • Sakakibara, H. et al. Theoretical analysis on the possibility of superconductivity in the trilayer Ruddlesden-Popper nickelate La4Ni3O10 under pressure and its experimental examination: comparison with La3Ni2O7. Phys. Rev. B 109, 144511 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Q. et al. Signature of superconductivity in pressurized La4Ni3O10. Chinese Phys. Lett. 41, 017401 (2024).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *