Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condens. Matter 64, 189–193 (1986).
Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).
Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).
Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994).
Wang, F. & Senthil, T. Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Phys. Rev. Lett. 106, 136402 (2011).
Kim, Y. K., Sung, N. H., Denlinger, J. D. & Kim, B. J. Observation of a d-wave gap in electron-doped Sr2IrO4. Nat. Phys. 12, 37–41 (2016).
Anisimov, V. I., Bukhvalov, D. & Rice, T. M. Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).
Lee, K.-W. & Pickett, W. E. Infnite-layer LaNiO2: Ni1+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).
Chaloupka, J. & Khaliullin, G. Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys. Rev. Lett. 100, 016404 (2008).
Zhang, J. et al. Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8. Proc. Natl Acad. Sci. USA 113, 8945–8950 (2016).
Lechermann, F. Late transition metal oxides with infinite-layer structure: nickelates versus cuprates. Phys. Rev. B 101, 081110 (2020).
Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).
Zeng, S. et al. Phase diagram and superconducting dome of infinite-layer Nd1−xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).
Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater. 21, 160–164 (2022).
Ding, X. et al. Critical role of hydrogen for superconductivity in nickelates. Nature 615, 50–55 (2023).
Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493–498 (2023).
Zhang, Y. et al. High-temperature superconductivity with zero-resistance and strange metal behavior in La3Ni2O7−δ. Preprint at arxiv.org/abs/2307.14819 (2023).
Zhou, Y. et al. Evidence of filamentary superconductivity in pressurized La3Ni2O7. Preprint at arxiv.org/abs/2311.12361 (2023).
Wang, G. et al. Pressure-induced superconductivity in polycrystalline La3Ni2O7−δ. Phys. Rev. X 14, 011040 (2024).
Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).
Ling, C. D. et al. Neutron diffraction study of La3Ni2O7: structural relationships among n = 1, 2, and 3 phases Lan+1NinO3n+1. J. Solid State Chem. 152, 517–525 (1999).
Gu, Y. et al. Effective model and pairing tendency in bilayer Ni-based superconductor La3Ni2O7. Preprint at arxiv.org/abs/2306.07275 (2023).
Scott, B. A. et al. Layer dependence of the superconducting transition temperature of HgBa2Can−1CunO2n+2+δ. Physica C 230, 239–245 (1994).
Kuzemskaya, I. G., Kuzemsky, A. L. & Cheglokov, A. A. Superconducting properties of the family of mercurocuprates and role of layered structure. J. Low-Temp. Phys. 118, 147–152 (2000).
Iyo, A. et al. Tc vs n relationship for multilayered high-Tc superconductors. J. Phys. Soc. Jpn. 76, 094711 (2007).
Schilling, A., Cantoni, M., Guo, J. D. & Ott, H. R. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature 363, 56–58 (1993).
Gao, L. et al. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B 50, 4260–4263 (1994).
Chakravarty, S., Kee, H.-Y. & Völker, K. An explanation for a universality of transition temperatures in families of copper oxide superconductors. Nature 428, 53–55 (2004).
Berg, E., Orgad, D., Kivelson, & Steven, A. Route to high-temperature superconductivity in composite systems. Phys. Rev. B 78, 094509 (2008).
Botana, A. S., Pardo, V. & Norman, M. R. Electron doped layered nickelates: spanning the phase diagram of the cuprates. Phys. Rev. Mater. 1, 021801 (2017).
Nica, E. M. et al. Theoretical investigation of superconductivity in trilayer square-planar nickelates. Phys. Rev. B 102, 020504 (2020).
Cheng, J.-G. et al. Pressure effect on the structural transition and suppression of the high-spin state in the triple-layer T’-La4Ni3O8. Phys. Rev. Lett. 108, 236403 (2012).
Zhang, J. et al. High oxygen pressure floating zone growth and crystal structure of the metallic nickelates R4Ni3O10 (R = La, Pr). Phys. Rev. Mater. 4, 083402 (2020).
Li, H. et al. Fermiology and electron dynamics of trilayer nickelate La4Ni3O10. Nat. Commun. 8, 704 (2017).
Zhang, J. et al. Intertwined density waves in a metallic nickelate. Nat. Commun. 11, 6003 (2020).
Hu, W. Z. et al. Origin of the spin density wave instability in AFe2As2 (A = Ba, Sr) as revealed by optical spectroscopy. Phys. Rev. Lett. 101, 257005 (2008).
Li, J. et al. Structural transition, electric transport, and electronic structures in the compressed trilayer nickelate La4Ni3O10. Sci. China-Phys. Mech. Astron. 67, 117403 (2024).
Yuan, N. et al. High-pressure crystal growth and investigation of the metal-to-metal transition of Ruddlesden–Popper trilayer nickelates La4Ni3O10. J. Cryst. Growth 627, 127511 (2024).
Wu, G., Neumeier, J. J. & Hundley, M. F. Magnetic susceptibility, heat capacity, and pressure dependence of the electrical resistivity of La3Ni2O7 and La4Ni3O10. Phys. Rev. B 63, 245120 (2001).
Gurvitch, M. & Fiory, A. T. Resistivity of La1.825Sr0.175CuO4 and YBa2Cu3O7 to 1100 K: absence of saturation and its implications. Phys. Rev. Lett. 59, 1337–1340 (1987).
Kasahara, S. et al. Evolution from non-Fermi- to Fermi-liquid transport via isovalent doping in BaFe2 (As41-xPx)2 superconductors. Phys. Rev. B 81, 184519 (2010).
Yuan, J. et al. Scaling of the strange-metal scattering in unconventional superconductors. Nature 602, 431–436 (2022).
Jiang, X. et al. Interplay between superconductivity and the strange-metal state in FeSe. Nat. Phys. 19, 365–371 (2023).
Lee, K. et al. Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2. Nature 619, 288–292 (2023).
Yang, J. et al. Orbital-dependent electron correlation in double-layer nickelate La3Ni2O7. Preprint at arxiv.org/abs/2309.01148 (2023).
Wang, F. et al. The electron pairing of KxFe2−ySe2. Europhys. Lett. 93, 57003 (2011).
Luo, X. et al. Electronic origin of high superconducting critical temperature in trilayer cuprates. Nat. Phys. 19, 1841–1847 (2023).
Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).
Deng, L. et al. Higher superconducting transition temperature by breaking the universal pressure relation. Proc. Natl Acad. Sci. USA 116, 2004–2008 (2019).
Prozorov, R. & Kogan, V. G. Effective demagnetizing factors of diamagnetic samples of various shapes. Phys. Rev. APP. 10, 014030 (2018).
Grissonnanche, G. et al. Direct measurement of the upper critical field in cuprate superconductors. Nat. Commun. 5, 3280 (2014).
Ando, Y. et al. Resistive upper critical fields and irreversibility lines of optimally doped high-Tc cuprates. Phys. Rev. B 60, 12475 (1999).
Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010).
Thompson, J. D., Maley, M. P., Newkirk, L. R. & Bartlett, R. J. High-field properties and scaling in CVD-prepared Nb3Ge. J. Appl. Phys. 50, 977–982 (1979).
Meier, Q. N. et al. Preempted phonon-mediated superconductivity in the infinite-layer nickelates. Phys. Rev. B 109, 184505 (2024).
Ouyang, Z., Gao, M. & Lu Z.-Y. Absence of phonon-mediated superconductivity in La3Ni2O7 under pressure. Preprint at arxiv.org/abs/2403.14400 (2024).
Leonov, I. V. Electronic structure and magnetic correlations in trilayer nickelate superconductor La4Ni3O10 under pressure. Preprint at arxiv.org/abs/2401.07350 (2024).
Tian, P., Ma, H.-T., Ming, X., Zheng, X.-J. & Li, H. Effective model and electron correlations in trilayer nickelate superconductor La4Ni3O10. Preprint at arxiv.org/abs/2402.02351 (2024).
Wang, J., Ouyang, Z., He, R.-Q. & Lu, Z.-Y. Non-Fermi liquid and Hund correlation in La4Ni3O10 under high pressure. Phys. Rev. B 109, 165140 (2024).
LaBollita, H., Kapeghian, J., Norman, M. R. & Botana, A. S. Electronic structure and magnetic tendencies of trilayer La4Ni3O10 under pressure: Structural transition, molecular orbitals, and layer differentiation. Phys. Rev. B 109, 195151 (2024).
Zhang, Y., Lin, L.-F., Moreo, A., Maier, T. A. & Dagotto, E. Prediction of s±-wave superconductivity enhanced by electronic doping in trilayer nickelates La4Ni3O10 under pressure. Preprint at arxiv.org/abs/2402.05285 (2024).
Yang, Q.-G., Jiang, K.-Y., Wang, D., Lu, H.-Y. & Wang, Q.-H. Effective model and s±-wave superconductivity in trilayer nickelate La4Ni3O10. Preprint at arxiv.org/html/2402.05447v2 (2024).
Lu, C., Pan, Z., Yang, F. & Wu, C. Superconductivity in La4Ni3O10 under pressure. Preprint at arxiv.org/abs/2402.06450 (2024).
Zhang, M. et al. Effects of pressure and doping on Ruddlesden-Popper phases Lan+1NinO3n+1. J. Mater. Sci. Technol. 185, 147–154 (2024).
Sakakibara, H. et al. Theoretical analysis on the possibility of superconductivity in the trilayer Ruddlesden-Popper nickelate La4Ni3O10 under pressure and its experimental examination: comparison with La3Ni2O7. Phys. Rev. B 109, 144511 (2024).
Li, Q. et al. Signature of superconductivity in pressurized La4Ni3O10. Chinese Phys. Lett. 41, 017401 (2024).