Field, J. E. The Properties of Natural and Synthetic Diamond (Academic, 1992).
May, P. W. The new diamond age? Science 319, 1490–1491 (2008).
Fairchild, B. A. et al. Fabrication of ultrathin single‐crystal diamond membranes. Adv. Mater. 20, 4793–4798 (2008).
Guo, X. et al. Tunable and transferable diamond membranes for integrated quantum technologies. Nano Lett. 21, 10392–10399 (2021).
Sumant, A. V. et al. Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17, 1039–1045 (2005).
Wort, C. J. & Balmer, R. S. Diamond as an electronic material. Mater. Today 11, 22–28 (2008).
Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nat. Photon. 5, 397–405 (2011).
Isberg, J. et al. High carrier mobility in single-crystal plasma-deposited diamond. Science 297, 1670–1672 (2002).
Watanabe, H., Nebel, C. & Shikata, S. Isotopic homojunction band engineering from diamond. Science 324, 1425–1428 (2009).
Tsao, J. et al. Ultrawide‐bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. 4, 1600501 (2018).
Bundy, F., Hall, H. T., Strong, H. & Wentorfjun, R. Man-made diamonds. Nature 176, 51–55 (1955).
Angus, J. C., Will, H. A. & Stanko, W. S. Growth of diamond seed crystals by vapor deposition. J. Appl. Phys. 39, 2915–2922 (1968).
Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater Sci. 55, 710–757 (2010).
Li, J., Shan, Z. & Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 39, 108–114 (2014).
Meng, Y. et al. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater. 8, 498–517 (2023).
Montblanch, A. R.-P., Barbone, M., Aharonovich, I., Atatüre, M. & Ferrari, A. C. Layered materials as a platform for quantum technologies. Nat. Nanotechnol. 18, 555–571 (2023).
Piracha, A. H. et al. Scalable fabrication of integrated nanophotonic circuits on arrays of thin single crystal diamond membrane windows. Nano Lett. 16, 3341–3347 (2016).
Aharonovich, I. & Neu, E. Diamond nanophotonics. Adv. Opt. Mater. 2, 911–928 (2014).
Rath, P., Khasminskaya, S., Nebel, C., Wild, C. & Pernice, W. H. Diamond-integrated optomechanical circuits. Nat. Commun. 4, 1690 (2013).
Sakamoto, K. et al. Laser slicing of a diamond at the {100} plane using an irradiation sequence that restricts crack propagation along the {111} plane. Diam. Relat. Mater. 136, 110045 (2023).
Williams, O. A. Nanocrystalline diamond. Diam. Relat. Mater. 20, 621–640 (2011).
Kaboli, S. & Burnley, P. C. Direct observations of crystal defects in polycrystalline diamond. Mater. Charact. 142, 154–161 (2018).
Schuelke, T. & Grotjohn, T. A. Diamond polishing. Diam. Relat. Mater. 32, 17–26 (2013).
Luo, H., Ajmal, K. M., Liu, W., Yamamura, K. & Deng, H. Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives. Int. J. Extreme Manuf. 3, 022003 (2021).
Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).
Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).
Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).
Kang, J.-H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).
Liu, F. et al. Lattice polarity manipulation of quasi‐vdW epitaxial GaN films on graphene through interface atomic configuration. Adv. Mater. 34, 2106814 (2022).
Liu, F. et al. Determination of the preferred epitaxy for III-nitride semiconductors on wet-transferred graphene. Sci. Adv. 9, eadf8484 (2023).
Yang, X. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).
Yi, M. & Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700–11715 (2015).
Kim, H. et al. Remote epitaxy. Nat. Rev. Methods Primers 2, 40 (2022).
Seal, M. Graphitization and plastic deformation of diamond. Nature 182, 1264–1267 (1958).
Strobel, P., Riedel, M., Ristein, J. & Ley, L. Surface transfer doping of diamond. Nature 430, 439–441 (2004).
Chakrapani, V. et al. Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318, 1424–1430 (2007).
Shi, Z. et al. Metallization of diamond. Proc. Natl Acad. Sci. 117, 24634–24639 (2020).
Banerjee, A. et al. Ultralarge elastic deformation of nanoscale diamond. Science 360, 300–302 (2018).
Dang, C. et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science 371, 76–78 (2021).
Freund, L. B. Dynamic Fracture Mechanics (Cambridge Univ. Press, 1998).
Camanho, P. P., Davila, C. G. & de Moura, M. Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37, 1415–1438 (2003).
Barenblatt, G. I. The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962).
Needleman, A. An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38, 289–324 (1990).
Zhao, H.-P., Wang, Y., Li, B.-W. & Feng, X.-Q. Improvement of the peeling strength of thin films by a bioinspired hierarchical interface. Int. J. Appl. Mech. 5, 1350012 (2013).
Miehe, C., Hofacker, M. & Welschinger, F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Meth. Appl. Mech. Eng. 199, 2765–2778 (2010).
Spatschek, R., Brener, E. & Karma, A. Phase field modeling of crack propagation. Philos. Mag. 91, 75–95 (2011).
Nie, A. et al. Approaching diamond’s theoretical elasticity and strength limits. Nat. Commun. 10, 5533 (2019).
Kulha, P. et al. Nanocrystalline diamond piezoresistive sensor. Vacuum 84, 53–56 (2009).
Adamschik, M. et al. Analysis of piezoresistive properties of CVD-diamond films on silicon. Diam. Relat. Mater. 10, 1670–1675 (2001).
Kulha, P., Babchenko, O., Kromka, A., Husak, M. & Haenen, K. Design and fabrication of piezoresistive strain gauges based on nanocrystalline diamond layers. Vacuum 86, 689–692 (2012).
Rycewic, M. et al. Low-strain sensor based on the flexible boron-doped diamond-polymer structures. Carbon 173, 832–841 (2021).
Dugdale, D. S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960).
de Oliveira, L. A. & Donadon, M. V. Delamination analysis using cohesive zone model: a discussion on traction-separation law and mixed-mode criteria. Eng. Fract. Mech. 228, 106922 (2020).
Anderson, T. L. Fracture Mechanics: Fundamentals and Applications (CRC Press, 2017).
A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…
Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…
15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…
Particles in ship exhaust inadvertently cause cloud brightening – some geoengineering projects would try to…
The weather outside is frightful, but the iOS games are so delightful, let it play,…
A few flagship bond funds from some big-name Southern California-based firms saw outflows of more…