Categories: NATURE

Scalable production of ultraflat and ultraflexible diamond membrane


  • Field, J. E. The Properties of Natural and Synthetic Diamond (Academic, 1992).

  • May, P. W. The new diamond age? Science 319, 1490–1491 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fairchild, B. A. et al. Fabrication of ultrathin single‐crystal diamond membranes. Adv. Mater. 20, 4793–4798 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Tunable and transferable diamond membranes for integrated quantum technologies. Nano Lett. 21, 10392–10399 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sumant, A. V. et al. Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17, 1039–1045 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Wort, C. J. & Balmer, R. S. Diamond as an electronic material. Mater. Today 11, 22–28 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nat. Photon. 5, 397–405 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Isberg, J. et al. High carrier mobility in single-crystal plasma-deposited diamond. Science 297, 1670–1672 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, H., Nebel, C. & Shikata, S. Isotopic homojunction band engineering from diamond. Science 324, 1425–1428 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsao, J. et al. Ultrawide‐bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. 4, 1600501 (2018).

    Article 

    Google Scholar
     

  • Bundy, F., Hall, H. T., Strong, H. & Wentorfjun, R. Man-made diamonds. Nature 176, 51–55 (1955).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Angus, J. C., Will, H. A. & Stanko, W. S. Growth of diamond seed crystals by vapor deposition. J. Appl. Phys. 39, 2915–2922 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater Sci. 55, 710–757 (2010).

    Article 

    Google Scholar
     

  • Li, J., Shan, Z. & Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 39, 108–114 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Meng, Y. et al. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater. 8, 498–517 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Montblanch, A. R.-P., Barbone, M., Aharonovich, I., Atatüre, M. & Ferrari, A. C. Layered materials as a platform for quantum technologies. Nat. Nanotechnol. 18, 555–571 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Piracha, A. H. et al. Scalable fabrication of integrated nanophotonic circuits on arrays of thin single crystal diamond membrane windows. Nano Lett. 16, 3341–3347 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aharonovich, I. & Neu, E. Diamond nanophotonics. Adv. Opt. Mater. 2, 911–928 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rath, P., Khasminskaya, S., Nebel, C., Wild, C. & Pernice, W. H. Diamond-integrated optomechanical circuits. Nat. Commun. 4, 1690 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sakamoto, K. et al. Laser slicing of a diamond at the {100} plane using an irradiation sequence that restricts crack propagation along the {111} plane. Diam. Relat. Mater. 136, 110045 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Williams, O. A. Nanocrystalline diamond. Diam. Relat. Mater. 20, 621–640 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kaboli, S. & Burnley, P. C. Direct observations of crystal defects in polycrystalline diamond. Mater. Charact. 142, 154–161 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schuelke, T. & Grotjohn, T. A. Diamond polishing. Diam. Relat. Mater. 32, 17–26 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, H., Ajmal, K. M., Liu, W., Yamamura, K. & Deng, H. Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives. Int. J. Extreme Manuf. 3, 022003 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, J.-H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, F. et al. Lattice polarity manipulation of quasi‐vdW epitaxial GaN films on graphene through interface atomic configuration. Adv. Mater. 34, 2106814 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, F. et al. Determination of the preferred epitaxy for III-nitride semiconductors on wet-transferred graphene. Sci. Adv. 9, eadf8484 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, M. & Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700–11715 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. et al. Remote epitaxy. Nat. Rev. Methods Primers 2, 40 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Seal, M. Graphitization and plastic deformation of diamond. Nature 182, 1264–1267 (1958).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Strobel, P., Riedel, M., Ristein, J. & Ley, L. Surface transfer doping of diamond. Nature 430, 439–441 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakrapani, V. et al. Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318, 1424–1430 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Z. et al. Metallization of diamond. Proc. Natl Acad. Sci. 117, 24634–24639 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee, A. et al. Ultralarge elastic deformation of nanoscale diamond. Science 360, 300–302 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dang, C. et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science 371, 76–78 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Freund, L. B. Dynamic Fracture Mechanics (Cambridge Univ. Press, 1998).

  • Camanho, P. P., Davila, C. G. & de Moura, M. Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37, 1415–1438 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Barenblatt, G. I. The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962).

    Article 
    MathSciNet 

    Google Scholar
     

  • Needleman, A. An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38, 289–324 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, H.-P., Wang, Y., Li, B.-W. & Feng, X.-Q. Improvement of the peeling strength of thin films by a bioinspired hierarchical interface. Int. J. Appl. Mech. 5, 1350012 (2013).

    Article 

    Google Scholar
     

  • Miehe, C., Hofacker, M. & Welschinger, F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Meth. Appl. Mech. Eng. 199, 2765–2778 (2010).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Spatschek, R., Brener, E. & Karma, A. Phase field modeling of crack propagation. Philos. Mag. 91, 75–95 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nie, A. et al. Approaching diamond’s theoretical elasticity and strength limits. Nat. Commun. 10, 5533 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulha, P. et al. Nanocrystalline diamond piezoresistive sensor. Vacuum 84, 53–56 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Adamschik, M. et al. Analysis of piezoresistive properties of CVD-diamond films on silicon. Diam. Relat. Mater. 10, 1670–1675 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kulha, P., Babchenko, O., Kromka, A., Husak, M. & Haenen, K. Design and fabrication of piezoresistive strain gauges based on nanocrystalline diamond layers. Vacuum 86, 689–692 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rycewic, M. et al. Low-strain sensor based on the flexible boron-doped diamond-polymer structures. Carbon 173, 832–841 (2021).

    Article 

    Google Scholar
     

  • Dugdale, D. S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960).

    Article 
    ADS 

    Google Scholar
     

  • de Oliveira, L. A. & Donadon, M. V. Delamination analysis using cohesive zone model: a discussion on traction-separation law and mixed-mode criteria. Eng. Fract. Mech. 228, 106922 (2020).

    Article 

    Google Scholar
     

  • Anderson, T. L. Fracture Mechanics: Fundamentals and Applications (CRC Press, 2017).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Qualcomm wins a legal battle over Arm chip licensing

    A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…

    1 day ago

    Three Comic/Movie/Band Reviews | Cup of Jo

    Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…

    1 day ago

    Actually, Flipping Properties Can Improve Housing Affordability—Here’s How

    15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…

    1 day ago

    Is solar geoengineering research having its moment?

    Particles in ship exhaust inadvertently cause cloud brightening – some geoengineering projects would try to…

    1 day ago

    5 Great Games to Put You in the Winter Mood

    The weather outside is frightful, but the iOS games are so delightful, let it play,…

    1 day ago

    Banner year for fixed-income funds leaves TCW and Western Asset behind

    A few flagship bond funds from some big-name Southern California-based firms saw outflows of more…

    1 day ago