Categories: NATURE

Scalable production of ultraflat and ultraflexible diamond membrane


  • Field, J. E. The Properties of Natural and Synthetic Diamond (Academic, 1992).

  • May, P. W. The new diamond age? Science 319, 1490–1491 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fairchild, B. A. et al. Fabrication of ultrathin single‐crystal diamond membranes. Adv. Mater. 20, 4793–4798 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Guo, X. et al. Tunable and transferable diamond membranes for integrated quantum technologies. Nano Lett. 21, 10392–10399 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sumant, A. V. et al. Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17, 1039–1045 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Wort, C. J. & Balmer, R. S. Diamond as an electronic material. Mater. Today 11, 22–28 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nat. Photon. 5, 397–405 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Isberg, J. et al. High carrier mobility in single-crystal plasma-deposited diamond. Science 297, 1670–1672 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, H., Nebel, C. & Shikata, S. Isotopic homojunction band engineering from diamond. Science 324, 1425–1428 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsao, J. et al. Ultrawide‐bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. 4, 1600501 (2018).

    Article 

    Google Scholar
     

  • Bundy, F., Hall, H. T., Strong, H. & Wentorfjun, R. Man-made diamonds. Nature 176, 51–55 (1955).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Angus, J. C., Will, H. A. & Stanko, W. S. Growth of diamond seed crystals by vapor deposition. J. Appl. Phys. 39, 2915–2922 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater Sci. 55, 710–757 (2010).

    Article 

    Google Scholar
     

  • Li, J., Shan, Z. & Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 39, 108–114 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Meng, Y. et al. Photonic van der Waals integration from 2D materials to 3D nanomembranes. Nat. Rev. Mater. 8, 498–517 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Montblanch, A. R.-P., Barbone, M., Aharonovich, I., Atatüre, M. & Ferrari, A. C. Layered materials as a platform for quantum technologies. Nat. Nanotechnol. 18, 555–571 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Piracha, A. H. et al. Scalable fabrication of integrated nanophotonic circuits on arrays of thin single crystal diamond membrane windows. Nano Lett. 16, 3341–3347 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aharonovich, I. & Neu, E. Diamond nanophotonics. Adv. Opt. Mater. 2, 911–928 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rath, P., Khasminskaya, S., Nebel, C., Wild, C. & Pernice, W. H. Diamond-integrated optomechanical circuits. Nat. Commun. 4, 1690 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sakamoto, K. et al. Laser slicing of a diamond at the {100} plane using an irradiation sequence that restricts crack propagation along the {111} plane. Diam. Relat. Mater. 136, 110045 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Williams, O. A. Nanocrystalline diamond. Diam. Relat. Mater. 20, 621–640 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kaboli, S. & Burnley, P. C. Direct observations of crystal defects in polycrystalline diamond. Mater. Charact. 142, 154–161 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schuelke, T. & Grotjohn, T. A. Diamond polishing. Diam. Relat. Mater. 32, 17–26 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, H., Ajmal, K. M., Liu, W., Yamamura, K. & Deng, H. Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives. Int. J. Extreme Manuf. 3, 022003 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, J.-H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, F. et al. Lattice polarity manipulation of quasi‐vdW epitaxial GaN films on graphene through interface atomic configuration. Adv. Mater. 34, 2106814 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, F. et al. Determination of the preferred epitaxy for III-nitride semiconductors on wet-transferred graphene. Sci. Adv. 9, eadf8484 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, M. & Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700–11715 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. et al. Remote epitaxy. Nat. Rev. Methods Primers 2, 40 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Seal, M. Graphitization and plastic deformation of diamond. Nature 182, 1264–1267 (1958).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Strobel, P., Riedel, M., Ristein, J. & Ley, L. Surface transfer doping of diamond. Nature 430, 439–441 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakrapani, V. et al. Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple. Science 318, 1424–1430 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Z. et al. Metallization of diamond. Proc. Natl Acad. Sci. 117, 24634–24639 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee, A. et al. Ultralarge elastic deformation of nanoscale diamond. Science 360, 300–302 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dang, C. et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science 371, 76–78 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Freund, L. B. Dynamic Fracture Mechanics (Cambridge Univ. Press, 1998).

  • Camanho, P. P., Davila, C. G. & de Moura, M. Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37, 1415–1438 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Barenblatt, G. I. The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962).

    Article 
    MathSciNet 

    Google Scholar
     

  • Needleman, A. An analysis of tensile decohesion along an interface. J. Mech. Phys. Solids 38, 289–324 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, H.-P., Wang, Y., Li, B.-W. & Feng, X.-Q. Improvement of the peeling strength of thin films by a bioinspired hierarchical interface. Int. J. Appl. Mech. 5, 1350012 (2013).

    Article 

    Google Scholar
     

  • Miehe, C., Hofacker, M. & Welschinger, F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Meth. Appl. Mech. Eng. 199, 2765–2778 (2010).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Spatschek, R., Brener, E. & Karma, A. Phase field modeling of crack propagation. Philos. Mag. 91, 75–95 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nie, A. et al. Approaching diamond’s theoretical elasticity and strength limits. Nat. Commun. 10, 5533 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulha, P. et al. Nanocrystalline diamond piezoresistive sensor. Vacuum 84, 53–56 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Adamschik, M. et al. Analysis of piezoresistive properties of CVD-diamond films on silicon. Diam. Relat. Mater. 10, 1670–1675 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kulha, P., Babchenko, O., Kromka, A., Husak, M. & Haenen, K. Design and fabrication of piezoresistive strain gauges based on nanocrystalline diamond layers. Vacuum 86, 689–692 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rycewic, M. et al. Low-strain sensor based on the flexible boron-doped diamond-polymer structures. Carbon 173, 832–841 (2021).

    Article 

    Google Scholar
     

  • Dugdale, D. S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960).

    Article 
    ADS 

    Google Scholar
     

  • de Oliveira, L. A. & Donadon, M. V. Delamination analysis using cohesive zone model: a discussion on traction-separation law and mixed-mode criteria. Eng. Fract. Mech. 228, 106922 (2020).

    Article 

    Google Scholar
     

  • Anderson, T. L. Fracture Mechanics: Fundamentals and Applications (CRC Press, 2017).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Intel reportedly plans to lay off over 21,000 employees

    Intel is set to cut over 21,000 people, or roughly 20% of its workforce, with…

    13 hours ago

    8 Readers Share What They Love About Their Looks

    What do you like about the way you look? Last week, we asked that question,…

    15 hours ago

    Healthcare Hacks That Could Save You Thousands on the Journey to FIRE

    Wealth and health are closely intertwined, especially here in the US, where the high cost…

    15 hours ago

    We can build quantum computers using the rules of special relativity

    The odd effects of special relativity can be harnessed to build quantum computersYuichiro Chino/Getty Images…

    15 hours ago

    One of the Best Puzzlers of 2025, The Art of Fauna, Receives Great Update for Earth Day

    It’s all about nature and is both simplistic and beautiful. Each puzzle is made from…

    15 hours ago

    Social Security rule reversals, office closures, cost cuts: Here’s what’s happening now

    A Social Security “war room,” threats to shut the agency, worker buyouts and a restraining…

    15 hours ago