• Syvitski, J. & Brakenridge, R. Causation and avoidance of catastrophic flooding along the Indus River, Pakistan. GSA Today 23, 4–10 (2013).

    Article 

    Google Scholar
     

  • Macklin, M. G. & Lewin, J. The rivers of civilization. Quat. Sci. Rev. 114, 228–244 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sinha, R. The great avulsion of Kosi on 18 August 2008. Curr. Sci. 97, 429–433 (2009).


    Google Scholar
     

  • Todd, O. J. & Eliassen, S. The Yellow River problem. Trans. Am. Soc. Civil Eng. 105, 346–416 (1940).

    Article 

    Google Scholar
     

  • Mohrig, D., Heller, P. L., Paola, C. & Lyons, W. J. Interpreting avulsion process from ancient alluvial sequences: Guadalope-Matarranya system (northern Spain) and Wasatch Formation (western Colorado). GSA Bull. 112, 1787–1803 (2000).

    Article 

    Google Scholar
     

  • Slingerland, R. & Smith, N. D. Necessary conditions for a meandering-river avulsion. Geology 26, 435–438 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Tornqvist, T. E. & Bridge, J. S. Spatial variation of overbank aggradation rate and its influence on avulsion frequency. Sedimentology 49, 891–905 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Chadwick, A. J., Lamb, M. P. & Ganti, V. Accelerated river avulsion frequency on lowland deltas due to sea-level rise. Proc. Natl Acad. Sci. 117, 17584–17590 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slingerland, R. & Smith, N. D. River avulsions and their deposits. Annu. Rev. Earth Planet. Sci. 32, 257–285 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jerolmack, D. J. & Mohrig, D. Conditions for branching in depositional rivers. Geology 35, 463–466 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Ganti, V., Chadwick, A. J., Hassenruck-Gudipati, H. J. & Lamb, M. P. Avulsion cycles and their stratigraphic signature on an experimental backwater-controlled delta. J. Geophys. Res. Earth Surf. 121, 1651–1675 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ganti, V., Lamb, M. P. & Chadwick, A. J. Autogenic erosional surfaces in fluvio-deltaic stratigraphy from floods, avulsions, and backwater hydrodynamics. J. Sediment. Res. 89, 815–832 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Allen, J. R. L. Studies in fluviatile sedimentation: an exploratory quantitative model for the architecture of avulsion-controlled alluvial suites. Sediment. Geol. 21, 129–147 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Bridge, J. S. & Leeder, M. R. A simulation model of alluvial stratigraphy. Sedimentology 26, 617–644 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Hajek, E. A. & Wolinsky, M. A. Simplified process modeling of river avulsion and alluvial architecture: connecting models and field data. Sediment. Geol. 257–260, 1–30 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Farr, T. G. et al. The Shuttle Radar Topography Mission. Rev. Geophys. 45, RG2004 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Ganti, V., Chu, Z., Lamb, M. P., Nittrouer, J. A. & Parker, G. Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China. Geophys. Res. Lett. 41, 7882–7890 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Brooke, S. et al. Where rivers jump course. Science 376, 987–990 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Neuenschwander, A., Guenther, E., White, J. C., Duncanson, L. & Montesano, P. Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sens. Environ. 251, 112110 (2020).

    Article 

    Google Scholar
     

  • Hawker, L. et al. A 30 m global map of elevation with forests and buildings removed. Environ. Res. Lett. 17, 024016 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Deal, E. Downstream hydraulic geometry data compilation. HydroShare http://www.hydroshare.org/resource/0629ffb81fdb40aa9e6be42cc11918ca (2021).

  • Anderson, R. S. & Anderson, S. P. Geomorphology: The Mechanics and Chemistry of Landscapes (Cambridge Univ. Press, 2010).

  • Aslan, A., Autin, W. J. & Blum, M. D. Causes of river avulsion: insights from the late Holocene avulsion history of the Mississippi River, U.S.A. J. Sediment. Res. 75, 650–664 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Rahman, M. M., Howell, J. A. & MacDonald, D. I. M. Quantitative analysis of crevasse-splay systems from modern fluvial settings. J. Sediment. Res. 92, 751–774 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Martin, H. K. & Edmonds, D. A. The push and pull of abandoned channels: how floodplain processes and healing affect avulsion dynamics and alluvial landscape evolution in foreland basins. Earth Surf. Dyn. 10, 555–579 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Jobe, Z. R. et al. Comparing aggradation, superelevation, and avulsion frequency of submarine and fluvial channels. Front. Earth Sci. 8, 53 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514–518 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Siani, S. M. O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 11, 4741 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Best, J., Ashmore, P. & Darby, S. E. Beyond just floodwater. Nat. Sustain. 5, 811–813 (2022).

    Article 

    Google Scholar
     

  • Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816–821 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Alifu, H., Hirabayashi, Y., Imada, Y. & Shiogama, H. Enhancement of river flooding due to global warming. Sci. Rep. 12, 20687 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bates, P. Fundamental limits to flood inundation modelling. Nat. Water 1, 566–567 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Edmonds, D. A., Hajek, E. A., Downton, N. & Bryk, A. B. Avulsion flow-path selection on rivers in foreland basins. Geology 44, 695–698 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Valenza, J. M., Edmonds, D. A., Hwang, T. & Roy, S. Downstream changes in river avulsion style are related to channel morphology. Nat. Commun. 11, 2116 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing, Y., Huang, J., Gruen, A. & Qin, L. Assessing the performance of ICESat-2/ATLAS multi-channel photon data for estimating ground topography in forested terrain. Remote Sen. 12, 2084 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Neuenschwander, A. L. et al. ATLAS/ICESat-2 L3a Land and Vegetation Height, Version 6. National Snow and Ice Data Center https://doi.org/10.5067/ATLAS/ATL08.006 (2023).

  • Dandabathula, G., Hari, R., Ghosh, K., Bera, A. K. & Srivastav, S. K. Accuracy assessment of digital bare-earth model using ICESat-2 photons: analysis of the FABDEM. Model. Earth Syst. Environ. 9, 2677–2694 (2023).

    Article 

    Google Scholar
     

  • Seeger, K. et al. Assessing land elevation in the Ayeyarwady Delta (Myanmar) and its relevance for studying sea level rise and delta flooding. Hydrol. Earth Syst. Sci. 27, 2257–2281 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Fahrland, E. Copernicus DEM product handbook. Airbus Defence and Space GmbH (2022).

  • Leopold, L. B. & Maddock, T. The hydraulic geometry of stream channels and some physiographic implications. USGS Professional Paper No. 252 (1953).

  • Parker, G. Hydraulic geometry of active gravel rivers. J. Hydraul. Div. 105, 1185–1201 (1979).

    Article 

    Google Scholar
     

  • Dunne, K. B. J. & Jerolmack, D. J. Evidence of, and a proposed explanation for, bimodal transport states in alluvial rivers. Earth Surf. Dyn. 6, 583–594 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Shwartz-Ziv, R. & Armon, A. Tabular data: deep learning is not all you need. Inf. Fusion 81, 84–90 (2022).

    Article 

    Google Scholar
     

  • NVIDIA Data Science Glossary. XGBoost https://www.nvidia.com/en-us/glossary/data-science/xgboost/.

  • Trampush, S. M., Huzurbazar, S. & McElroy, B. Empirical assessment of theory for bankfull characteristics of alluvial channels. Water Resour. Res. 50, 9211–9220 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller Schmied, H. et al. The global water resources and use model WaterGAP v2.2d: model description and evaluation. Geosci. Model Dev. 14, 1037–1079 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Gearon, J. Rules of river avulsion supplementary data files. Zenodo https://doi.org/10.5281/zenodo.10338685 (2024).

  • Gearon, J. jameshgrn/rulesofriveravulsion: publication_release. Zenodo https://doi.org/10.5281/zenodo.13693548 (2024).

  • Lehner, B. & Grill, G. Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Center for International Earth Science Information Network (CIESIN), Columbia University. Global Gridded Relative Deprivation Index (GRDI), Version 1. NASA Socioeconomic Data and Applications Center (SEDAC) https://doi.org/10.7927/3xxe-ap97 (2022).

  • G20 Background Brief. G20 Presidency https://www.g20.org/en/about-the-g20 (2023).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *