Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. BME-17, 70–71 (1970).
Bergveld, P. Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 88, 1–20 (2003).
Bergveld, P. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. 19, 342–351 (1972).
Fu, W., Jiang, L., van Geest, E. P., Lima, L. M. C. & Schneider, G. F. Sensing at the surface of graphene field‐effect transistors. Adv. Mater. 29, 1603610 (2017).
Saba, G. K. et al. The development and validation of a profiling glider deep ISFET-based pH sensor for high resolution observations of coastal and ocean acidification. Front. Mar. Sci. 6, 664 (2019).
Margarit-Taulé, J. M., Martín-Ezquerra, M., Escudé-Pujol, R., Jiménez-Jorquera, C. & Liu, S.-C. Cross-compensation of FET sensor drift and matrix effects in the industrial continuous monitoring of ion concentrations. Sens. Actuators B Chem. 353, 131123 (2022).
Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).
Weston, M., Geng, S. & Chandrawati, R. Food sensors: challenges and opportunities. Adv. Mater. Technol. 6, 2001242 (2021).
Xue, M. et al. Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 13, 5064 (2022).
Fakih, I. et al. Selective ion sensing with high resolution large area graphene field effect transistor arrays. Nat. Commun. 11, 3226 (2020).
Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
Treuting, R. G. & Arnold, S. M. Orientation habits of metal whiskers. Acta Metall. 5, 598 (1957).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Heller, I. et al. Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J. Am. Chem. Soc. 132, 17149–17156 (2010).
Ang, P. K., Chen, W., Wee, A. T. S. & Loh, K. P. Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392–14393 (2008).
Knopfmacher, O. et al. Nernst Limit in Dual-Gated Si-Nanowire FET Sensors. Nano Lett. 10, 2268–2274 (2010).
Wang, K. et al. Carbon nanotube field-effect transistor based pH sensors. Carbon 205, 540–545 (2023).
Fu, W. et al. High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale 5, 12104–12110 (2013).
Shang, X., Park, C. H., Jung, G. Y., Kwak, S. K. & Oh, J. H. Highly enantioselective graphene-based chemical sensors prepared by chiral noncovalent functionalization. ACS Appl. Mater. Interfaces 10, 36194–36201 (2018).
Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
Ohno, Y., Maehashi, K., Yamashiro, Y. & Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9, 3318–3322 (2009).
Lei, N., Li, P., Xue, W. & Xu, J. Simple graphene chemiresistors as pH sensors: fabrication and characterization. Meas. Sci. Technol. 22, 107002 (2011).
Lee, M. H. et al. Apparent pH sensitivity of solution-gated graphene transistors. Nanoscale 7, 7540–7544 (2015).
Jung, S.-H. et al. Super-Nernstian pH sensor based on anomalous charge transfer doping of defect-engineered graphene. Nano Lett. 21, 34–42 (2021).
Mailly-Giacchetti, B. et al. pH sensing properties of graphene solution-gated field-effect transistors. J. Appl. Phys. 114, 084505 (2013).
Gao, J. et al. Graphene-based field-effect transistors integrated with microfluidic chip for real-time pH monitoring of seawater. J. Mater. Sci., Mater. Electron. 31, 15372–15380 (2020).
Helmholtz, H. Studien über electrische Grenzschichten. Ann. Phys. Chem. 243, 337–382 (1879).
Gouy, M. Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl. 9, 457–468 (1910).
Chapman, D. L. LI. A contribution to the theory of electrocapillarity. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 25, 475–481 (1913).
Wang, Z. L. & Wang, A. C. On the origin of contact-electrification. Mater. Today 30, 34–51 (2019).
Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022).
Salvo, P. et al. Graphene-based devices for measuring pH. Sens. Actuators B Chem. 256, 976–991 (2018).
Fu, W. et al. Graphene transistors are insensitive to pH changes in solution. Nano Lett. 11, 3597–3600 (2011).
LeBow, N. et al. Real-time edge neuromorphic tasting from chemical microsensor arrays. Front. Neurosci. 15, 771480 (2021).
Chang, K.-M., Chang, C.-T., Chao, K.-Y. & Lin, C.-H. A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors. Sensors 10, 4643–4654 (2010).
Sinha, S. et al. Temperature and temporal drift compensation for Al2O3-gate ISFET-based pH sensor using machine learning techniques. Microelectron. J. 97, 104710 (2020).
Larose, D. T. & Larose, C. D. in Discovering Knowledge in Data: An Introduction to Data Mining 149–164 (Wiley, 2014).
Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989).
Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Proc. 31st International Conference on Neural Information Processing Systems Vol. 30, 4768–4777 (ACM, 2017).
Chauhan, S. L., Priyanka, Mandal, K. D., Paul, B. R. & Maji, C. Adulteration of milk: a review. Int. J. Chem. Stud. 7, 2055–2057 (2019).
Techane, T. Effect of adulterants on quality and safety of cow milk: a review. Int. J. Diabetes Metab. Disord. 8, 277–287 (2023).
Das, S., Goswami, B. & Biswas, K. Milk adulteration and detection: a review. 14, 4–18 (2016).
Danezis, G. P., Tsagkaris, A. S., Camin, F., Brusic, V. & Georgiou, C. A. Food authentication: techniques, trends & emerging approaches. Trends Analt. Chem. 85, 123–132 (2016).
Aung, M. M. & Chang, Y. S. Traceability in a food supply chain: safety and quality perspectives. Food Control 39, 172–184 (2014).
Wang, Z., DeWitt, J. C., Higgins, C. P. & Cousins, I. T. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ. Sci. Technol. 51, 2508–2518 (2017).
Glüge, J. et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 22, 2345–2373 (2020).
Cousins, I. T. et al. The concept of essential use for determining when uses of PFASs can be phased out. Environ. Sci. Process. Impacts 21, 1803–1815 (2019).