• Baik, L. S. & Carlson, J. R. The mosquito taste system and disease control. Proc. Natl Acad. Sci. USA 117, 32848–32856 (2020).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 13, e0007213 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Yang, B. et al. Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition. PLoS Negl. Trop. Dis. 15, e0009063 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Coutinho-Abreu, I. V., Riffell, J. A. & Akbari, O. S. Human attractive cues and mosquito host-seeking behavior. Trends Parasitol. 38, 246–264 (2022).

    Article 

    Google Scholar
     

  • Syed, Z. & Leal, W. S. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc. Natl Acad. Sci. USA 106, 18803–18808 (2009).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Greppi, C. et al. Mosquito heat seeking is driven by an ancestral cooling receptor. Science 367, 681–684 (2020).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Laursen, W. J. et al. Humidity sensors that alert mosquitoes to nearby hosts and egg-laying sites. Neuron 111, 874–887.e878 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • De Obaldia, M. E. et al. Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Cell 185, 4099–4116.e4013 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Corfas, R. A. & Vosshall, L. B. The cation channel TRPA1 tunes mosquito thermotaxis to host temperatures. eLife 4, e11750 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Alonso San Alberto, D. et al. The olfactory gating of visual preferences to human skin and visible spectra in mosquitoes. Nat. Commun. 13, 555 (2022).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z. et al. Mosquito brains encode unique features of human odour to drive host seeking. Nature 605, 706–712 (2022).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • McBride, C. S. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • McMeniman, C. J., Corfas, R. A., Matthews, B. J., Ritchie, S. A. & Vosshall, L. B. Multimodal integration of carbon dioxide and other sensory cues drives mosquito attraction to humans. Cell 156, 1060–1071 (2014).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Vinauger, C. et al. Visual-olfactory integration in the human disease vector mosquito Aedes aegypti. Curr. Biol. 29, 2509–2516.e2505 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Lahondere, C. et al. The olfactory basis of orchid pollination by mosquitoes. Proc. Natl Acad. Sci. USA 117, 708–716 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Joseph, R. M. & Carlson, J. R. Drosophila chemoreceptors: A molecular interface between the chemical world and the brain. Trends Genet. 31, 683–695 (2015).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Weiss, L. A., Dahanukar, A., Kwon, J. Y., Banerjee, D. & Carlson, J. R. The molecular and cellular basis of bitter taste in Drosophila. Neuron 69, 258–272 (2011).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Lacaille, F. et al. An inhibitory sex pheromone tastes bitter for Drosophila males. PLoS ONE 2, e661 (2007).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Dweck, H. K. M. & Carlson, J. R. Diverse mechanisms of taste coding in Drosophila. Sci. Adv. 9, eadj7032 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Mustard, J. A. Neuroactive nectar: compounds in nectar that interact with neurons. Arthropod Plant Interact. 14, 151–159 (2020).

    Article 

    Google Scholar
     

  • Afify, A. & Galizia, C. G. Chemosensory cues for mosquito oviposition site selection. J. Med. Entomol. 52, 120–130 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Matthews, B. J., Younger, M. A. & Vosshall, L. B. The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti. eLife 8, e43963 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Delgado-Povedano, M. M., Calderon-Santiago, M., Priego-Capote, F., & Luque de Castro, M. D. Study of sample preparation for quantitative analysis of amino acids in human sweat by liquid chromatography–tandem mass spectrometry. Talanta 146, 310–317 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Baker, L. B. & Wolfe, A. S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol. 120, 719–752 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Costa-da-Silva, A. L. Artificial membrane feeding mosquitoes in the laboratory with Glytube. Cold Spring Harb. Protoc. 2023, 108013 (2023).

    Article 

    Google Scholar
     

  • Dunstan, R. H. et al. Sweat facilitated amino acid losses in male athletes during exercise at 32–34 degrees C. PLoS ONE 11, e0167844 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Baker, L. B. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med 47, 111–128 (2017).

    Article 
    PubMed Central 

    Google Scholar
     

  • Attardo, G. M., Hansen, I. A., Shiao, S. H. & Raikhel, A. S. Identification of two cationic amino acid transporters required for nutritional signaling during mosquito reproduction. J. Exp. Biol. 209, 3071–3078 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, S., Baik, L. S., Shang, X. & Carlson, J. R. Meeting a threat of the Anthropocene: taste avoidance of metal ions by Drosophila. Proc. Natl Acad. Sci. USA 119, e2204238119 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Hol, F. J., Lambrechts, L. & Prakash, M. BiteOscope, an open platform to study mosquito biting behavior. eLife 9, e56829 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Murray, G. P. D., Giraud, E. & Hol, F. J. H. Characterizing mosquito biting behavior using the BiteOscope. Cold Spring Harb. Protoc. 2023, 108176 (2023).

    Article 

    Google Scholar
     

  • Wood, C. S., Harrison, G. A., Dore, C. & Weiner, J. S. Selective feeding of Anopheles gambiae according to ABO blood group status. Nature 239, 165 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Giraldo, D. et al. Human scent guides mosquito thermotaxis and host selection under naturalistic conditions. Curr. Biol. 33, 2367–2382 e2367 (2023).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. D. & Dahanukar, A. Recent advances in the genetic basis of taste detection in Drosophila. Cell. Mol. Life Sci. 77, 1087–1101 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Matthews, B. J., McBride, C. S., DeGennaro, M., Despo, O. & Vosshall, L. B. The neurotranscriptome of the Aedes aegypti mosquito. BMC Genomics 17, 32 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Boyle, J. H. et al. A linkage-based genome assembly for the mosquito Aedes albopictus and identification of chromosomal regions affecting diapause. Insects 12, 167 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Sugar sensation and mechanosensation in the egg-laying preference shift of Drosophila suzukii. eLife 11, e81703 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Sanchez-Alcaniz, J. A. et al. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat. Commun. 9, 4252 (2018).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Ganguly, A. et al. A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Rep. 18, 737–750 (2017).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Croset, V., Schleyer, M., Arguello, J. R., Gerber, B. & Benton, R. A molecular and neuronal basis for amino acid sensing in the Drosophila larva. Sci Rep. 6, 34871 (2016).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Jiao, Y., Moon, S. J., Wang, X., Ren, Q. & Montell, C. Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr. Biol. 18, 1797–1801 (2008).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Dahanukar, A., Lei, Y. T., Kwon, J. Y. & Carlson, J. R. Two Gr genes underlie sugar reception in Drosophila. Neuron 56, 503–516 (2007).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Aryal, B., Dhakal, S., Shrestha, B. & Lee, Y. Molecular and neuronal mechanisms for amino acid taste perception in the Drosophila labellum. Curr. Biol. 32, 1376–1386.e1374 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jove, V. et al. Sensory discrimination of blood and floral nectar by Aedes aegypti mosquitoes. Neuron 108, 1163–1180.e1112 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Hussain, A. et al. Ionotropic chemosensory receptors mediate the taste and smell of polyamines. PLoS Biol. 14, e1002454 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Min, S., Ai, M., Shin, S. A. & Suh, G. S. Dedicated olfactory neurons mediating attraction behavior to ammonia and amines in Drosophila. Proc. Natl Acad. Sci. USA 110, E1321–E1329 (2013).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Rimal, S. et al. Mechanism of acetic acid gustatory repulsion in Drosophila. Cell Rep. 26, 1432–1442.e1434 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Montell, C. Drosophila sensory receptors-a set of molecular Swiss Army knives. Genetics 217, 1–34 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Melo, N. et al. The irritant receptor TRPA1 mediates the mosquito repellent effect of catnip. Curr. Biol. 31, 1988–1994.e1985 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Leung, N. Y. & Montell, C. Unconventional roles of opsins. Annu. Rev. Cell Dev. Biol. 33, 241–264 (2017).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Kwon, H. W., Lu, T., Rutzler, M. & Zwiebel, L. J. Olfactory responses in a gustatory organ of the malaria vector mosquito Anopheles gambiae. Proc. Natl Acad. Sci. USA 103, 13526–13531 (2006).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Saveer, A. M., Pitts, R. J., Ferguson, S. T. & Zwiebel, L. J. Characterization of chemosensory responses on the labellum of the malaria vector mosquito, Anopheles coluzzii. Sci Rep. 8, 5656 (2018).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • de Bruyne, M., Foster, K. & Carlson, J. R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001).

    Article 

    Google Scholar
     

  • Hallem, E. A., Ho, M. G. & Carlson, J. R. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Cao, L. H. et al. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila. Nat. Commun. 8, 1357 (2017).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Kessler, S., Vlimant, M. & Guerin, P. M. The sugar meal of the African malaria mosquito Anopheles gambiae and how deterrent compounds interfere with it: a behavioural and neurophysiological study. J. Exp. Biol. 216, 1292–1306 (2013).

    CAS 

    Google Scholar
     

  • French, A. S. et al. Dual mechanism for bitter avoidance in Drosophila. J. Neurosci. 35, 3990–4004 (2015).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Su, C. Y., Menuz, K., Reisert, J. & Carlson, J. R. Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature 492, 66–71 (2012).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Su, C. Y., Martelli, C., Emonet, T. & Carlson, J. R. Temporal coding of odor mixtures in an olfactory receptor neuron. Proc. Natl Acad. Sci. USA 108, 5075–5080 (2011).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468 (2013).

    Article 
    PubMed Central 

    Google Scholar
     

  • Lauer, J. et al. Multi-animal pose estimation, identification and tracking with DeepLabCut. Nat. Methods 19, 496–504 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Gonzalez, P. V., Gonzalez, Audino, P. A. & Masuh, H. M. Oviposition behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in response to the presence of heterospecific and conspecific larvae. J. Med. Entomol. 53, 268–272 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yoshioka, M. et al. Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae). Parasit. Vectors 5, 225 (2012).

    Article 
    PubMed Central 

    Google Scholar
     

  • Khan, Z., Bohman, B., Ignell, R. & Hill, S. R. Odour-mediated oviposition site selection in Aedes aegypti depends on aquatic stage and density. Parasit. Vectors 16, 264 (2023).

    Article 
    PubMed Central 

    Google Scholar
     

  • Jove, V., Venkataraman, K., Gabel, T. M. & Duvall, L. B. Feeding and quantifying animal-derived blood and artificial meals in Aedes aegypti mosquitoes. J. Vis. Exp. https://doi.org/10.3791/61835 (2020).

    Article 

    Google Scholar
     

  • Matthews, B. J. et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 563, 501–507 (2018).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *