• Prelas, M. A. et al. Nuclear Batteries and Radioisotopes (Springer, 2016).

  • Prelas, M. A. et al. A review of nuclear batteries. Prog. Nucl. Energ. 75, 117–148 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Olsen, L. C., Cabauy, P. & Elkind, B. J. et al. Betavoltaic power sources. Phys. Today 65, 35–38 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Spencer, M. G., & Alam, T. High power direct energy conversion by nuclear batteries. Appl. Phys. Rev. 6, 031305 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Liu, B. J. et al. Alpha-voltaic battery on diamond Schottky barrier diode. Diam. Relat. Mater. 87, 35–42 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weaver, C. L. et al. Radiation resistant PIDECα cell using photon intermediate direct energy conversion and a 210Po source. Appl. Radiat. Isotopes. 132, 110–115 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nullmeyer, B. R. et al. Self-healing effects in a semi-ordered liquid for stable electronic conversion of high-energy radiation. Sci Rep. 8, 12404 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, R. et al. Isoelectronic aluminum-doped gallium nitride alpha-voltaic cell with efficiency exceeding 4.5%. Commun Mater. 4, 50 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sychov, M. et al. Alpha indirect conversion radioisotope power source. Appl. Radiat. Isotopes 66, 173–177 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Cress, C. D., Landi, B. J., Raffaelle, R. P. & Wilt, D. M. InGaP alpha voltaic batteries: synthesis, modeling, and radiation tolerance. J. Appl. Phys. 100, 114519 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Sperling, J. M. et al. Structural and spectroscopic investigation of two plutonium mellitates. Inorg. Chem. 59, 3085–3090 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sperling, J. M. et al. Pronounced pressure dependence of electronic transitions for americium compared to isomorphous neodymium and samarium mellitates. Inorg. Chem. 60, 476–483 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sperling, J. M. et al. C Synthesis, characterization, and high-pressure studies of a 3D berkelium(III) carboxylate framework material. Chem. Commun. 58, 2200–2203 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Galley, S. S. et al. Synthesis and characterization of tris-chelate complexes for understanding f-orbital bonding in later actinides. J. Am. Chem. Soc. 141, 2356–2366 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marcelo, O. R. et al. Modeling, structural, and spectroscopic studies of lanthanide-organic frameworks. J. Phys. Chem. B 113, 12181–12188 (2009).

    Article 

    Google Scholar
     

  • Knoll, G. F. Radiation Detection and Measurement (Wiley, 2010).

  • Tsoulfanidis, N. et al. Measurement and Detection of Radiation (CRC Press, 2021).

  • Horrocks, D. L. The mechanisms of the liquid scintillation process. Liq. Scintillation 1976, 1–16 (1976).


    Google Scholar
     

  • Gilson, S. E. et al. Unprecedented radiation resistant thorium–binaphthol metal–organic framework. J. Am. Chem. Soc. 142, 13299–13304 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, L. et al. Identifying the recognition site for selective trapping of 99TcO4 in a hydrolytically stable and radiation resistant cationic metal–organic framework. J. Am. Chem. Soc. 139, 14873–14876 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • David, P. M. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article 

    Google Scholar
     

  • Yin, J. W. et al. Tuning octahedral tilting by doping to prevent detrimental phase transition and extend carrier lifetime in organometallic perovskites. J. Am. Chem. Soc. 145, 5393–5399 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russo, J. et al. A radioluminescent nuclear battery using volumetric configuration: 63Ni solution/ZnS:Cu,Al/InGaP. Appl. Radiat. Isotopes 130, 66–74 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, T. et al. In-depth analysis of the internal energy conversion of nuclear batteries and radiation degradation of key materials. Energy Technol. 8, 2000667 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Z. et al. Enhanced radioluminescent nuclear battery by optimizing structural design of the phosphor layer. Int. J. Energy Res. 42, 1729–1737 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tang, X. et al. Physical parameters of phosphor layers and their effects on the device properties of beta-radioluminescent nuclear batteries. Energy Technol. 3, 1121–1129 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tang, X.-B. et al. Temperature effect of a radioluminescent nuclear battery based on 147Pm/ZnS:Cu/GaAs. Appl. Radiat. Isotopes 97, 118–124 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Z. et al. Designing performance enhanced nuclear battery based on the Cd-109 radioactive source. Int. J. Energy Res. 44, 508–517 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ambadas, B. P. Novel nuclear batteries based on radioluminescence. Energy Technol. 10, 2200285 (2022).

    Article 

    Google Scholar
     

  • Lei, Y. Demonstration and aging test of a radiation resistant strontium-90 betavoltaic mechanism. Appl. Phys. Lett. 116, 153901 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dolomanov, O. V. et al. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Wrighton, M. S., Ginley, D. S. & Morse, D. L. A technique for the determination of absolute emission quantum yields of powdered samples. J. Phys. Chem. 78, 2229–2232 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J.-X. et al. Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators. Nat. Photon. 16, 869–875 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, L. et al. Emergence of a lanthanide chalcogenide as an ideal scintillator for a flexible X-ray detector. Angew. Chem. Int. Ed. 62, e202306465 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J.-X. et al. Aggregation-induced fluorescence enhancement for efficient X-ray imaging scintillators and high-speed optical wireless communication. ACS Materials Lett. 9, 1668–1675 (2022).

    Article 

    Google Scholar
     

  • Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Allison, J. et al. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. A 835, 186–225 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *