Alferov, Z. I. Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Rev. Mod. Phys. 73, 767–782 (2001).
Ni, Y. et al. Influence of the carbon-doping location on the material and electrical properties of a AlGaN/GaN heterostructure on Si substrate. Semicond. Sci. Technol. 30, 105037 (2015).
Williams, R. E. Modern GaAs Processing Methods (Artech House Publishers, 1990).
Matthews, J. W. & Blakeslee, A. E. Defects in epitaxial multilayers. J. Cryst. Growth 27, 118–125 (1974).
Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).
Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).
Xu, J.-P. et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).
Frolov, S. M., Manfra, M. J. & Sau, J. D. Topological superconductivity in hybrid devices. Nat. Phys. 16, 718–724 (2020).
Biswas, S., Li, Y., Winter, S. M., Knolle, J. & Valentí, R. Electronic properties of α–RuCl3 in proximity to graphene. Phys. Rev. Lett. 123, 237201 (2019).
Jin, H.-K. & Knolle, J. Flat and correlated plasmon bands in graphene/α–RuCl3 heterostructures. Phys. Rev. B 104, 045140 (2021).
Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).
Mundy, J. A. et al. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016).
Li, Z. et al. Multiferroicity in manganite/titanate superlattices determined by oxygen pressure-mediated cation defects. J. Appl. Phys. 113, 164302 (2013).
Novoselov, K. S. et al. A roadmap for graphene. Nature 490, 192–200 (2012).
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017). This paper presented the assembly of large-scale vdW superlattices through layer-by-layer stacking 2D atomic layers grown by chemical vapour deposition.
Jin, G. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 16, 1092–1098 (2021).
Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021). This study first demonstrated multidimensional higher-order vdW superlattices constructed by rolling up vdW heterostructures.
Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).
Basu, S. et al. Synthesis and properties of lithium-graphite intercalation compounds. Mater. Sci. Eng. 38, 275–283 (1979).
Ohzuku, T., Iwakoshi, Y. & Sawai, K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J. Electrochem. Soc. 140, 2490–2498 (1993).
Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022). This study reported the first LHSL used in a spin-tunnelling junction, showing excellent spin polarization ratio.
Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). This study demonstrated the first bulk monolayer semiconductor prepared with electrochemical intercalation.
Wan, Z. et al. Unconventional superconductivity in chiral molecule–TaS2 hybrid superlattices. Nature 632, 69–74 (2024). This work presented the first observation of field-free superconducting diode effect in chiral-molecule-intercalated superconducting LHSLs.
Hamaue, Y. & Aoki, R. Effects of organic intercalation on lattice vibrations and superconducting properties of 2H-NbS2. J. Phys. Soc. Jpn. 55, 1327–1335 (1986).
Shi, M. Z. et al. FeSe-based superconductors with a superconducting transition temperature of 50 K. New J. Phys. 20, 123007 (2018).
Wu, H. et al. Spacing dependent and cation doping independent superconductivity in intercalated 1T 2D SnSe2. 2D Mater. 6, 045048 (2019).
Zhang, H. et al. Enhancement of superconductivity in organic-inorganic hybrid topological materials. Sci. Bull. 65, 188–193 (2020).
Wang, N. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced Curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 141, 17166–17173 (2019).
Zheng, G. et al. Gate-tuned interlayer coupling in van der Waals ferromagnet Fe3GeTe2 nanoflakes. Phys. Rev. Lett. 125, 47202 (2020).
Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).
Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022). This paper represents a critical report of introducing magnetic ordering in LHSLs.
Li, Z. et al. Imprinting ferromagnetism and superconductivity in single atomic layers of molecular superlattices. Adv. Mater. 32, 1907645 (2020).
Zhang, J., Sun, J., Li, Y., Shi, F. & Cui, Y. Electrochemical control of copper intercalation into nanoscale Bi2Se3. Nano Lett. 17, 1741–1747 (2017).
Pereira, J. M. et al. Percolating superconductivity in air‐stable organic‐ion intercalated MoS2. Adv. Funct. Mater. 32, 2208761 (2022).
Li, Z. et al. Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc. 139, 16398–16404 (2017). This paper first reported the signature of coexistence of superconductivity and magnetism in LHSLs.
Tezze, D. et al. Tuning the magnetic properties of NiPS3 through organic-ion intercalation. Nanoscale 14, 1165–1173 (2022).
Lin, Z. et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 7, 1887–1902 (2021).
Zhou, J. et al. Modular assembly of a library of hybrid superlattices and artificial quantum solids. Matter 7, 1131–1145 (2024). The above two studies first used the exfoliation and co-assembly method to prepare various LHSLs that are difficult to access using chemical and electrochemical intercalation.
Chen, X. et al. Stage-1 cationic C60 intercalated graphene oxide films. Carbon 175, 131–140 (2021).
Zhao, Y. et al. Aggregation‐induced emission luminogens for direct exfoliation of 2D layered materials in ethanol. Adv. Mater. Interfaces 7, 2000795 (2020).
Pinkard, A., Champsaur, A. M. & Roy, X. Molecular clusters: nanoscale building blocks for solid-state materials. Acc. Chem. Res. 51, 919–929 (2018).
Zhao, W., Tan, P. H., Liu, J. & Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 133, 5941–5946 (2011).
Giustino, F. et al. The 2021 quantum materials roadmap. J. Phys. Mater. 3, 042006 (2020).
Zhang, H. et al. Tailored Ising superconductivity in intercalated bulk NbSe2. Nat. Phys. 18, 1425–1430 (2022). This study reports 2D Ising superconductivity in LHSLs.
Zhou, B. et al. A chemical-dedoping strategy to tailor electron density in molecular-intercalated bulk monolayer MoS2. Nat. Synth. 3, 67–75 (2023).
Zhou, B. et al. Giant second harmonic generation in bulk monolayer MoS2 thin films. Matter 7, 2448–2459 (2024).
Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).
Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).
Medina, E., González-Arraga, L. A., Finkelstein-Shapiro, D., Berche, B. & Mujica, V. Continuum model for chiral induced spin selectivity in helical molecules. J. Chem. Phys. 142, 194308 (2015).
Dalum, S. & Hedegård, P. Theory of chiral induced spin selectivity. Nano Lett. 19, 5253–5259 (2019).
Bian, Z. et al. Hybrid chiral MoS2 layers for spin-polarized charge transport and spin-dependent electrocatalytic applications. Adv. Sci. 9, 2201063 (2022).
Bian, Z. et al. Chiral van der Waals superlattices for enhanced spin‐selective transport and spin‐dependent electrocatalytic performance. Adv. Mater. 35, 2306061 (2023).
Kim, Y. H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).
Shen, B., Kim, Y. & Lee, M. Supramolecular chiral 2D materials and emerging functions. Adv. Mater. 32, 1905669 (2020).
Gamble, F. R., DiSalvo, F. J., Klemm, R. A. & Geballe, T. H. Superconductivity in layered structure organometallic crystals. Science 168, 568–570 (1970). This is one of the earliest studies on tailored superconductivity in LHSLs.
Gamble, F. R., Osiecki, J. H. & DiSalvo, F. J. Some superconducting intercalation complexes of TaS2 and substituted pyridines. J. Chem. Phys. 55, 3525–3530 (1971).
Woollam, J. A. & Somoano, R. B. Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2. Phys. Rev. B 13, 3843–3853 (1976).
Koike, Y., Tanuma, S., Suematsu, H. & Higuchi, K. Superconductivity in the graphite-potassium intercalation compound C8K. J. Phys. Chem. Solids 41, 1111–1118 (1980).
Zhao, D. et al. Evidence of finite-momentum pairing in a centrosymmetric bilayer. Nat. Phys. 19, 1599–1604 (2023).
Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).
Yuan, N. F. Q. & Fu, L. Supercurrent diode effect and finite-momentum superconductors. Proc. Natl Acad. Sci. 119, e2119548119 (2022).
Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Frigeri, P. A., Agterberg, D. F., Koga, A. & Sigrist, M. Superconductivity without inversion symmetry: MnSi versus CePt3Si. Phys. Rev. Lett. 92, 097001 (2004).
Hsu, Y.-T., Vaezi, A., Fischer, M. H. & Kim, E.-A. Topological superconductivity in monolayer transition metal dichalcogenides. Nat. Commun. 8, 14985 (2017).
Kezilebieke, S. et al. Topological superconductivity in a van der Waals heterostructure. Nature 588, 424–428 (2020).
Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).
Wu, Y., Li, D., Wu, C. L., Hwang, H. Y. & Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 8, 41–53 (2023).
Ryu, Y. K., Frisenda, R. & Castellanos-Gomez, A. Superlattices based on van der Waals 2D materials. Chem. Commun. 55, 11498–11510 (2019).
Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009).
Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).
Pereira, J. M., Tezze, D., Ormaza, M., Hueso, L. E. & Gobbi, M. Engineering magnetism and superconductivity in van der Waals materials via organic‐ion intercalation. Adv. Phys. Res. 2, 2200084 (2023).
Münzer, W. et al. Skyrmion lattice in the doped semiconductor Fe1−xCoxSi. Phys. Rev. B 81, 041203 (2010).
Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).
Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
Wu, Y. et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat. Commun. 11, 3860 (2020).
Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).
Chen, J. et al. Evidence for magnetic skyrmions at the interface of ferromagnet/topological-insulator heterostructures. Nano Lett. 19, 6144–6151 (2019).
Zhang, C. et al. Chiral helimagnetism and one-dimensional magnetic solitons in a Cr-intercalated transition metal dichalcogenide. Adv. Mater. 33, 2101131 (2021).
Du, K. et al. Topological spin/structure couplings in layered chiral magnet Cr1/3TaS2: the discovery of spiral magnetic superstructure. Proc. Natl Acad. Sci. 118, e2023337118 (2021).
Liebmann, M. et al. Giant Rashba-type spin splitting in ferroelectric GeTe(111). Adv. Mater. 28, 560–565 (2016).
Rinaldi, C. et al. Ferroelectric control of the spin texture in GeTe. Nano Lett. 18, 2751–2758 (2018).
Djani, H. et al. Rationalizing and engineering Rashba spin-splitting in ferroelectric oxides. npj Quantum Mater. 4, 51 (2019).
Yao, Q.-F. et al. Manipulation of the large Rashba spin splitting in polar two-dimensional transition-metal dichalcogenides. Phys. Rev. B 95, 165401 (2017).
Cui, C., Xue, F., Hu, W.-J. & Li, L.-J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 18 (2018).
Picozzi, S. Ferroelectric Rashba semiconductors as a novel class of multifunctional materials. Front. Phys. 2, 10 (2014).
Yang, H., Yang, S. H., Takahashi, S., Maekawa, S. & Parkin, S. S. P. Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. Nat. Mater. 9, 586–593 (2010).
Keizer, R. S. et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2. Nature 439, 825–827 (2006).
Bulaevskii, L. N., Kuzii, V. V. & Sobyanin, A. A. Superconducting system with weak coupling to the current in the ground state. JETP Lett. 25, 290–294 (1977).
Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Long-range proximity effects in superconductor-ferromagnet structures. Phys. Rev. Lett. 86, 4096–4099 (2001).
Hikino, S., Takahashi, S., Mori, M. & Maekawa, S. Proximity effects in a superconductor/ferromagnet junction. J. Phys. Chem. Solids 69, 3257–3260 (2008).
Cai, R. et al. Evidence for anisotropic spin-triplet Andreev reflection at the 2D van der Waals ferromagnet/superconductor interface. Nat. Commun. 12, 6725 (2021).
Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).
Sanchez-Manzano, D. et al. Extremely long-range, high-temperature Josephson coupling across a half-metallic ferromagnet. Nat. Mater. 21, 188–194 (2022).
Feofanov, A. K. et al. Implementation of superconductor/ferromagnet/superconductor π-shifters in superconducting digital and quantum circuits. Nat. Phys. 6, 593–597 (2010).
Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: evidence for a π junction. Phys. Rev. Lett. 86, 2427–2430 (2001).
Ren, M. Q. et al. Direct observation of full-gap superconductivity and pseudogap in two-dimensional fullerides. Phys. Rev. Lett. 124, 187001 (2020).
Wang, J. I. J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).
Van der Donck, M. et al. Three-dimensional electron-hole superfluidity in a superlattice close to room temperature. Phys. Rev. B 102, 060503 (2020).
Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).
Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).
Zarenia, M., Hamilton, A. R., Peeters, F. M. & Neilson, D. Multiband mechanism for the sign reversal of Coulomb drag observed in double bilayer graphene heterostructures. Phys. Rev. Lett. 121, 36601 (2018).
Anton-Solanas, C. et al. Bosonic condensation of exciton–polaritons in an atomically thin crystal. Nat. Mater. 20, 1233–1239 (2021).
Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).
Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).
Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).
Huang, D., Choi, J., Shih, C. K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).
Fujita, M., Washizu, S., Ogura, K. & Kwon, Y. J. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4′-bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994).
Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).
Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2, 672–677 (2010).
Cook, T. R., Zheng, Y. R. & Stang, P. J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 113, 734–777 (2013).
Xie, Y. F., Ding, S. Y., Liu, J. M., Wang, W. & Zheng, Q. Y. Triazatruxene based covalent organic framework and its quick-response fluorescence-on nature towards electron rich arenes. J. Mater. Chem. C 3, 10066–10069 (2015).
Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).
Zhou, Z.-B. et al. Toward azo-linked covalent organic frameworks by developing linkage chemistry via linker exchange. Nat. Commun. 13, 2180 (2022).
Qian, C. et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nat. Rev. Chem. 6, 881–898 (2022).
Shuku, Y., Suizu, R., Nakano, S., Tsuchiizu, M. & Awaga, K. Engineering Dirac cones and topological flat bands with organic molecules. Phys. Rev. B 107, 155123 (2023).
Liu, C. et al. Controllable van der Waals gaps by water adsorption. Nat. Nanotechnol. 19, 448–454 (2024).
Li, B. et al. Twisted bilayer graphene induced by intercalation. Nano Lett. 23, 5475–5481 (2023).
Murray, C. B., Kagan, C. R. & Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270, 1335–1338 (1995).
Black, C. T., Murray, C. B., Sandstrom, R. L. & Sun, S. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290, 1131–1134 (2000).
Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 466, 474–477 (2010).
Dalapati, S. et al. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat. Commun. 6, 7786 (2015).
Kelley, E. G. et al. Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway. Nat. Commun. 5, 3599 (2014).
Kaleeswaran, D., Vishnoi, P. & Murugavel, R. [3+3] Imine and β-ketoenamine tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing. J. Mater. Chem. C 3, 7159–7171 (2015).
Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).
Zhang, Z. M. et al. Self-intercalated 1T-FeSe2 as an effective kagome lattice. Nano Lett. 23, 954–961 (2023).
Du, L., Chen, Q., Barr, A. D., Barr, A. R. & Fiete, G. A. Floquet Hofstadter butterfly on the kagome and triangular lattices. Phys. Rev. B 98, 245145 (2018).
Liu, Y. et al. Room-temperature long-range ferromagnetic order in a confined molecular monolayer. Nat. Phys. 20, 281–286 (2024). This study resolves a highly ordered molecular layer self-assembled on 2DACs.
Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986).
Dines, M. B. Isocyanide intercalation complexes of titanium and tantalum disulfide. Inorg. Chem. 17, 762–763 (1978).
Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).