Categories: NATURE

Global potential for natural regeneration in deforested tropical regions


  • Holl, K. D. Restoring tropical forests from the bottom up. Science 355, 455–456 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large‐scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730 (2016).

    Article 

    Google Scholar
     

  • Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, e1701345 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolosin, M. et al. Exponential Roadmap for Natural Climate Solutions (Conservation International, 2022).

  • IPCC Working Group. Climate Change 2022 Mitigation of Climate Change Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014).

  • The Bonn Challenge www.bonnchallenge.org/about (IUCN, 2020).

  • First Draft of the Post-2020 Global Biodiversity Framework (CBD, 2021).

  • Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • NDC’s—a Force for Nature? (WWF, 2021).

  • Brancalion, P. H. S. et al. What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biol. Conserv. 240, 108274 (2019).

    Article 

    Google Scholar
     

  • Hua, F. et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376, 839–844 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bodin, B. et al. A standard framework for assessing the costs and benefits of restoration: introducing The Economics of Ecosystem Restoration. Restor. Ecol. 30, e13515 (2022).

  • Chazdon, R. L. et al. Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 15, 043002 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Laestadius, L. et al. Mapping Opportunities for Forest Landscape Restoration (FAO, 2011).

  • Veldman, J. W. et al. Comment on “The global tree restoration potential”. Science 366, eaay7976 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fagan, M. E. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Glob. Change Biol. 26, 4679–4690 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ling, P.-Y. et al. Mapping global forest regeneration—an untapped potential to mitigate climate change and biodiversity loss. Environ. Res. Lett. 18, 054025 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Fagan, M. E. et al. The expansion of tree plantations across tropical biomes. Nat. Sustain. 5, 681–688 (2022).

    Article 

    Google Scholar
     

  • Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sloan, S., Goosem, M. & Laurance, S. G. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc. Ecol. 31, 601–618 (2016).

    Article 

    Google Scholar
     

  • Cerri, C. C., Volkoff, B. & Andreaux, F. Nature and behaviour of organic matter in soils under natural forest, and after deforestation, burning and cultivation, near Manaus. For. Ecol. Manage. 38, 247–257 (1991).

    Article 

    Google Scholar
     

  • Damian, J. M. et al. Deforestation and land use change mediate soil carbon changes in the eastern Brazilian Amazon. Reg. Environ. Change 21, 64 (2021).

  • Shoo, L. P. & Catterall, C. P. Stimulating natural regeneration of tropical forest on degraded land: approaches, outcomes, and information gaps. Restor. Ecol. 21, 670–677 (2013).

    Article 

    Google Scholar
     

  • Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Annex 3A.1 Biomass Default Tables for Section 3.2 Forest Land (ICPP, 2003).

  • Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature https://doi.org/10.1038/s41586-023-06723-z (2023).

  • López-Cubillos, S. et al. Spatial prioritization to achieve the triple bottom line in payment for ecosystem services design. Ecosyst. Serv. 55, 101424 (2022).

  • Bustamante, M. M. C. et al. Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil. Mitig. Adapt. Strateg. Glob. Change 24, 1249–1270 (2019).

    Article 

    Google Scholar
     

  • César, R. G. et al. It is not just about time: agricultural practices and surrounding forest cover affect secondary forest recovery in agricultural landscapes. Biotropica https://doi.org/10.1111/btp.12893 (2021).

  • Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (Univ. Chicago Press, 2014).

  • Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change 5, 756115 (2022).

  • Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).

    Article 

    Google Scholar
     

  • Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Brancalion, P. H. S. & Holl, K. D. Guidance for successful tree planting initiatives. J. Appl. Ecol. 57, 2349–2361 (2020).

    Article 

    Google Scholar
     

  • Shono, K., Chazdon, R., Bodin, B., Wilson, S. J. & Durst, P. Assisted natural regeneration: harnessing nature for restoration. Unasylva 252, 71–81 (2020).


    Google Scholar
     

  • Holl, K. D., Loik, M. E., Lin, E. H. V. & Samuels, I. A. Tropical Montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restor. Ecol. 8, 339–349 (2000).

    Article 

    Google Scholar
     

  • Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45, 538–550 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zahawi, R. A., Reid, J. L. & Holl, K. D. Hidden costs of passive restoration. Restor. Ecol. 22, 284–287 (2014).

    Article 

    Google Scholar
     

  • Reid, J. L. et al. How long do restored ecosystems persist? Ann. Mo. Bot. Gard. 102, 258–265 (2017).

    Article 

    Google Scholar
     

  • Brancalion, P. H. S. et al. A call to develop carbon credits for second-growth forests. Nat. Ecol. Evol. 8, 179–180 (2024).

  • Warsaw Framework for REDD+ (UNFCCC, 2023).

  • West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 117, 24188–24194 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeong, K. L. et al. Enrichment planting to improve habitat quality and conservation value of tropical rainforest fragments. Biodivers. Conserv. 25, 957–973 (2016).

  • Wilson, S. J. Communal management as a strategy for restoring cloud forest landscapes in Andean Ecuador. World Dev. Perspect. 3, 47–49 (2016).

    Article 

    Google Scholar
     

  • Soares-Filho, B. et al. Land use. Cracking Brazil’s forest code. Science 344, 363–364 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. Lond. B 375, 20190126 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Potapov, P., Laestadius, L. & Minnemeyer, S. Global Map of Potential Forest Cover www.wri.org/resources/maps/atlas-forest-and-landscape-restoration-opportunities/data-info (2011).

  • Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schultz, B. et al. Recognizing the equity implications of restoration priority maps. Environ. Res. Lett. 17, 114019 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Streck, C. REDD+ and leakage: debunking myths and promoting integrated solutions. Clim. Policy 21, 843–852 (2021).

    Article 

    Google Scholar
     

  • Meyfroidt, P. & Lambin, E. F. Global forest transition: prospects for an end to deforestation. Annu. Rev. Environ. Resour. 36, 343–371 (2011).

    Article 

    Google Scholar
     

  • Crouzeilles, R. et al. Achieving cost‐effective landscape‐scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).

  • Wang, Y. et al. High-resolution maps show that rubber causes substantial deforestation. Nature 623, 340–346 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olofsson, P. et al. Mitigating the effects of omission errors on area and area change estimates. Remote Sens. Environ. 236, 111492 (2020).

    Article 

    Google Scholar
     

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Land Cover CCI Product User Guide Version 2 Technical Report (ESA, 2017).

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

  • Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Database of Global Administrative Areas (GADM, 2022).

  • Cubina, A. & Aide, T. M. The effect of distance from forest edge on seed rain and soil seed bank in a tropical Pasture1. Biotropica 33, 260–267 (2001).

    Article 

    Google Scholar
     

  • ArcGIS (GIS software) v.10.8. (ESRI, 2022).

  • Algeet-Abarquero, N., Sánchez-Azofeifa, A., Bonatti, J. & Marchamalo, M. Land cover dynamics in Osa Region, Costa Rica: secondary forest is here to stay. Reg. Environ. Change 15, 1461–1472 (2015).

    Article 

    Google Scholar
     

  • Protected Planet: The World Database on Protected Areas (WDPA) v.1.6 www.protectedplanet.net/en (UNEP-WCMC, IUCN, 2020).

  • Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Heneghan, L. et al. Integrating soil ecological knowledge into restoration management. Restor. Ecol. 16, 608–617 (2008).

    Article 

    Google Scholar
     

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Molin, P. G., Chazdon, R., Frosini de Barros Ferraz, S. & Brancalion, P. H. S. A landscape approach for cost‐effective large‐scale forest restoration. J. Appl. Ecol. 55, 2767–2778 (2018).

    Article 

    Google Scholar
     

  • Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

  • Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Yackulic, C. B. et al. Biophysical and socioeconomic factors associated with forest transitions at multiple spatial and temporal scales. Ecol. Soc. 16, 15 (2011).

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Piffer, P. R., Rosa, M. R., Tambosi, L. R., Metzger, J. P. & Uriarte, M. Turnover rates of regenerated forests challenge restoration efforts in the Brazilian Atlantic forest. Environ. Res. Lett. 17, 045009 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Schiavina, M., Freire, S. & MacManus, K. GHS Population Grid Multitemporal (1975, 1990, 2000, 2015) R2019A (European Commission JRC, 2019).

  • Redo, D. J., Grau, H. R., Aide, T. M. & Clark, M. L. Asymmetric forest transition driven by the interaction of socioeconomic development and environmental heterogeneity in Central America. Proc. Natl Acad. Sci. USA 109, 8839–8844 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kummu, M., Taka, M. & Guillaume, J. H. A. Data from: Gridded global datasets for gross domestic product and human development index over 1990–2015, v2. Dryad https://doi.org/10.5061/dryad.dk1j0 (2020).

  • Thomlinson, J. R. et al. Land-use dynamics in a post-agricultural Puerto rican landscape (1936-1988). Biotropica 28, 525 (1996).

    Article 

    Google Scholar
     

  • Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Maillard, O. Post-fire natural regeneration trends in Bolivia: 2001–2021. Fire 6, 18 (2023).

    Article 

    Google Scholar
     

  • Scheper, A. C., Verweij, P. A. & van Kuijk, M. Post-fire forest restoration in the humid tropics: a synthesis of available strategies and knowledge gaps for effective restoration. Sci. Total Environ. 771, 144647 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Artés, T. et al. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data 6, 296 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kummu, M., de Moel, H., Ward, P. J. & Varis, O. How close do we live to water? A global analysis of population distance to freshwater bodies. PLoS ONE 6, e20578 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, B. A. et al. Data for ‘Global potential for natural regeneration in deforested tropical regions’. Zenodo https://doi.org/10.5281/zenodo.7428803 (2024).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Microsoft pauses Windows 11 updates for PCs with some Ubisoft games installed

    After installing Windows 11, version 24H2, you might encounter issues with some Ubisoft games. These…

    2 hours ago

    Have a Delicious Weekend. | Cup of Jo

    What are you up to this weekend? Tonight I’m excited to see Oh, Mary!, the…

    4 hours ago

    Surprising Housing Markets Where Investors Are Seeing the Most Price Growth

    In This Article Key Takeaways Pandemic-era hotspots like Florida’s West Coast, including Punta Gorda and…

    4 hours ago

    Hunter-gatherers built a massive fish trap in Belize 4000 years ago

    Satellite image showing channels that formed part of an ancient fishery, and Mayan sites nearbyGoogle…

    4 hours ago

    5 Great Thanksgiving Apps

    Everything you’ve ever wanted to know about the holiday can be found in the Thanksgiving…

    4 hours ago

    ‘My house is paid off’: How do I ensure my son-in-law never gets my money — even if my daughter dies before he does?

    “I would like it to go to only my daughter and grandchildren.” Source link

    5 hours ago