Categories: NATURE

Global potential for natural regeneration in deforested tropical regions


  • Holl, K. D. Restoring tropical forests from the bottom up. Science 355, 455–456 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large‐scale forest restoration in the tropics: prospects and challenges. Biotropica 48, 716–730 (2016).

    Article 

    Google Scholar
     

  • Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, e1701345 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolosin, M. et al. Exponential Roadmap for Natural Climate Solutions (Conservation International, 2022).

  • IPCC Working Group. Climate Change 2022 Mitigation of Climate Change Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014).

  • The Bonn Challenge www.bonnchallenge.org/about (IUCN, 2020).

  • First Draft of the Post-2020 Global Biodiversity Framework (CBD, 2021).

  • Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Environ. 20, 10–15 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • NDC’s—a Force for Nature? (WWF, 2021).

  • Brancalion, P. H. S. et al. What makes ecosystem restoration expensive? A systematic cost assessment of projects in Brazil. Biol. Conserv. 240, 108274 (2019).

    Article 

    Google Scholar
     

  • Hua, F. et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376, 839–844 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bodin, B. et al. A standard framework for assessing the costs and benefits of restoration: introducing The Economics of Ecosystem Restoration. Restor. Ecol. 30, e13515 (2022).

  • Chazdon, R. L. et al. Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 15, 043002 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Laestadius, L. et al. Mapping Opportunities for Forest Landscape Restoration (FAO, 2011).

  • Veldman, J. W. et al. Comment on “The global tree restoration potential”. Science 366, eaay7976 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fagan, M. E. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Glob. Change Biol. 26, 4679–4690 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ling, P.-Y. et al. Mapping global forest regeneration—an untapped potential to mitigate climate change and biodiversity loss. Environ. Res. Lett. 18, 054025 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Fagan, M. E. et al. The expansion of tree plantations across tropical biomes. Nat. Sustain. 5, 681–688 (2022).

    Article 

    Google Scholar
     

  • Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sloan, S., Goosem, M. & Laurance, S. G. Tropical forest regeneration following land abandonment is driven by primary rainforest distribution in an old pastoral region. Landsc. Ecol. 31, 601–618 (2016).

    Article 

    Google Scholar
     

  • Cerri, C. C., Volkoff, B. & Andreaux, F. Nature and behaviour of organic matter in soils under natural forest, and after deforestation, burning and cultivation, near Manaus. For. Ecol. Manage. 38, 247–257 (1991).

    Article 

    Google Scholar
     

  • Damian, J. M. et al. Deforestation and land use change mediate soil carbon changes in the eastern Brazilian Amazon. Reg. Environ. Change 21, 64 (2021).

  • Shoo, L. P. & Catterall, C. P. Stimulating natural regeneration of tropical forest on degraded land: approaches, outcomes, and information gaps. Restor. Ecol. 21, 670–677 (2013).

    Article 

    Google Scholar
     

  • Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Annex 3A.1 Biomass Default Tables for Section 3.2 Forest Land (ICPP, 2003).

  • Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature https://doi.org/10.1038/s41586-023-06723-z (2023).

  • López-Cubillos, S. et al. Spatial prioritization to achieve the triple bottom line in payment for ecosystem services design. Ecosyst. Serv. 55, 101424 (2022).

  • Bustamante, M. M. C. et al. Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil. Mitig. Adapt. Strateg. Glob. Change 24, 1249–1270 (2019).

    Article 

    Google Scholar
     

  • César, R. G. et al. It is not just about time: agricultural practices and surrounding forest cover affect secondary forest recovery in agricultural landscapes. Biotropica https://doi.org/10.1111/btp.12893 (2021).

  • Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (Univ. Chicago Press, 2014).

  • Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change 5, 756115 (2022).

  • Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).

    Article 

    Google Scholar
     

  • Chazdon, R. L. et al. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Brancalion, P. H. S. & Holl, K. D. Guidance for successful tree planting initiatives. J. Appl. Ecol. 57, 2349–2361 (2020).

    Article 

    Google Scholar
     

  • Shono, K., Chazdon, R., Bodin, B., Wilson, S. J. & Durst, P. Assisted natural regeneration: harnessing nature for restoration. Unasylva 252, 71–81 (2020).


    Google Scholar
     

  • Holl, K. D., Loik, M. E., Lin, E. H. V. & Samuels, I. A. Tropical Montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restor. Ecol. 8, 339–349 (2000).

    Article 

    Google Scholar
     

  • Chazdon, R. L. et al. When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45, 538–550 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zahawi, R. A., Reid, J. L. & Holl, K. D. Hidden costs of passive restoration. Restor. Ecol. 22, 284–287 (2014).

    Article 

    Google Scholar
     

  • Reid, J. L. et al. How long do restored ecosystems persist? Ann. Mo. Bot. Gard. 102, 258–265 (2017).

    Article 

    Google Scholar
     

  • Brancalion, P. H. S. et al. A call to develop carbon credits for second-growth forests. Nat. Ecol. Evol. 8, 179–180 (2024).

  • Warsaw Framework for REDD+ (UNFCCC, 2023).

  • West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Overstated carbon emission reductions from voluntary REDD+ projects in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 117, 24188–24194 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeong, K. L. et al. Enrichment planting to improve habitat quality and conservation value of tropical rainforest fragments. Biodivers. Conserv. 25, 957–973 (2016).

  • Wilson, S. J. Communal management as a strategy for restoring cloud forest landscapes in Andean Ecuador. World Dev. Perspect. 3, 47–49 (2016).

    Article 

    Google Scholar
     

  • Soares-Filho, B. et al. Land use. Cracking Brazil’s forest code. Science 344, 363–364 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. Lond. B 375, 20190126 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Potapov, P., Laestadius, L. & Minnemeyer, S. Global Map of Potential Forest Cover www.wri.org/resources/maps/atlas-forest-and-landscape-restoration-opportunities/data-info (2011).

  • Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schultz, B. et al. Recognizing the equity implications of restoration priority maps. Environ. Res. Lett. 17, 114019 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Streck, C. REDD+ and leakage: debunking myths and promoting integrated solutions. Clim. Policy 21, 843–852 (2021).

    Article 

    Google Scholar
     

  • Meyfroidt, P. & Lambin, E. F. Global forest transition: prospects for an end to deforestation. Annu. Rev. Environ. Resour. 36, 343–371 (2011).

    Article 

    Google Scholar
     

  • Crouzeilles, R. et al. Achieving cost‐effective landscape‐scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709 (2020).

  • Wang, Y. et al. High-resolution maps show that rubber causes substantial deforestation. Nature 623, 340–346 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olofsson, P. et al. Mitigating the effects of omission errors on area and area change estimates. Remote Sens. Environ. 236, 111492 (2020).

    Article 

    Google Scholar
     

  • Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Land Cover CCI Product User Guide Version 2 Technical Report (ESA, 2017).

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

  • Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Database of Global Administrative Areas (GADM, 2022).

  • Cubina, A. & Aide, T. M. The effect of distance from forest edge on seed rain and soil seed bank in a tropical Pasture1. Biotropica 33, 260–267 (2001).

    Article 

    Google Scholar
     

  • ArcGIS (GIS software) v.10.8. (ESRI, 2022).

  • Algeet-Abarquero, N., Sánchez-Azofeifa, A., Bonatti, J. & Marchamalo, M. Land cover dynamics in Osa Region, Costa Rica: secondary forest is here to stay. Reg. Environ. Change 15, 1461–1472 (2015).

    Article 

    Google Scholar
     

  • Protected Planet: The World Database on Protected Areas (WDPA) v.1.6 www.protectedplanet.net/en (UNEP-WCMC, IUCN, 2020).

  • Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Heneghan, L. et al. Integrating soil ecological knowledge into restoration management. Restor. Ecol. 16, 608–617 (2008).

    Article 

    Google Scholar
     

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Molin, P. G., Chazdon, R., Frosini de Barros Ferraz, S. & Brancalion, P. H. S. A landscape approach for cost‐effective large‐scale forest restoration. J. Appl. Ecol. 55, 2767–2778 (2018).

    Article 

    Google Scholar
     

  • Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

  • Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, M., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Yackulic, C. B. et al. Biophysical and socioeconomic factors associated with forest transitions at multiple spatial and temporal scales. Ecol. Soc. 16, 15 (2011).

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Piffer, P. R., Rosa, M. R., Tambosi, L. R., Metzger, J. P. & Uriarte, M. Turnover rates of regenerated forests challenge restoration efforts in the Brazilian Atlantic forest. Environ. Res. Lett. 17, 045009 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Schiavina, M., Freire, S. & MacManus, K. GHS Population Grid Multitemporal (1975, 1990, 2000, 2015) R2019A (European Commission JRC, 2019).

  • Redo, D. J., Grau, H. R., Aide, T. M. & Clark, M. L. Asymmetric forest transition driven by the interaction of socioeconomic development and environmental heterogeneity in Central America. Proc. Natl Acad. Sci. USA 109, 8839–8844 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kummu, M., Taka, M. & Guillaume, J. H. A. Data from: Gridded global datasets for gross domestic product and human development index over 1990–2015, v2. Dryad https://doi.org/10.5061/dryad.dk1j0 (2020).

  • Thomlinson, J. R. et al. Land-use dynamics in a post-agricultural Puerto rican landscape (1936-1988). Biotropica 28, 525 (1996).

    Article 

    Google Scholar
     

  • Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Maillard, O. Post-fire natural regeneration trends in Bolivia: 2001–2021. Fire 6, 18 (2023).

    Article 

    Google Scholar
     

  • Scheper, A. C., Verweij, P. A. & van Kuijk, M. Post-fire forest restoration in the humid tropics: a synthesis of available strategies and knowledge gaps for effective restoration. Sci. Total Environ. 771, 144647 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Artés, T. et al. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data 6, 296 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Kummu, M., de Moel, H., Ward, P. J. & Varis, O. How close do we live to water? A global analysis of population distance to freshwater bodies. PLoS ONE 6, e20578 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, B. A. et al. Data for ‘Global potential for natural regeneration in deforested tropical regions’. Zenodo https://doi.org/10.5281/zenodo.7428803 (2024).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Why do wet dogs shake themselves dry? Neuroscience has an answer

    Experiments with mice have revealed the neuroscience of why dogs shake their wet fur.Credit: Nat…

    47 mins ago

    Will South Africa become first country to accept controversial form of human genome editing?

    Researchers have voiced concerns after South Africa updated its health-research ethics guidelines to include a…

    52 mins ago

    What Trump’s election victory could mean for AI, climate and more

    From repealing climate policies to overturning guidance on the safe development of artificial intelligence (AI),…

    59 mins ago

    Uses Forward SMS to Quickly Send Texts to Email, Slack, Teams, and More

    The new app Forward SMS makes it simple to share that information with a team.…

    7 hours ago

    Organic Consumers Association Takes Legal Action Against Mission Produce

    Mission Produce claims to use "water resources effectively and efficiently" to "prevent water waste and…

    7 hours ago

    Trump finds supporters in Gen Z men

    Despite a conservative presidential platform of issuing mass-deportations, clamping down on women’s reproductive rights, and…

    8 hours ago