• Landau, L. Theory of the superfluidity of helium ii. Phys. Rev. 60, 356–358 (1941).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Landau, L. On the theory of superfluidity of helium ii. J. Phys. 11, 91–92 (1947).

    CAS 

    Google Scholar
     

  • Feynman, R. P. & Cohen, M. Energy spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189–1204 (1956).

    Article 
    ADS 

    Google Scholar
     

  • Henshaw, D. G. & Woods, A. D. B. Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev. 121, 1266–1274 (1961).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Godfrin, H. et al. Observation of a roton collective mode in a two-dimensional Fermi liquid. Nature 483, 576–579 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Donnelly, R. Rotons: a low-temperature puzzle. Phys. World 10, 25–30 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Nozières, P. Is the roton in superfluid 4He the ghost of a Bragg spot? J. Low Temp. Phys. 137, 45–67 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Bobrov, V., Trigger, S. & Litinski, D. Universality of the phonon-roton spectrum in liquids and superfluidity of 4He. Z. Naturforsch. A 71, 565–575 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Girvin, S. M., MacDonald, A. H. & Platzman, P. M. Magneto-roton theory of collective excitations in the fractional quantum Hall effect. Phys. Rev. B 33, 2481–2494 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kukushkin, I. V., Smet, J. H., Scarola, V. W., Umansky, V. & von Klitzing, K. Dispersion of the excitations of fractional quantum Hall states. Science 324, 1044–1047 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mottl, R. et al. Roton-type mode softening in a quantum gas with cavity-mediated long-range interactions. Science 336, 1570–1573 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442–446 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mukherjee, B. et al. Crystallization of bosonic quantum Hall states in a rotating quantum gas. Nature 601, 58–62 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Apaja, V., Halinen, J., Halonen, V., Krotscheck, E. & Saarela, M. Charged-boson fluid in two and three dimensions. Phys. Rev. B 55, 12925–12945 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • De Palo, S., Conti, S. & Moroni, S. Monte Carlo simulations of two-dimensional charged bosons. Phys. Rev. B 69, 035109 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Kalman, G. J., Hartmann, P., Golden, K. I., Filinov, A. & Donkó, Z. Correlational origin of the roton minimum. Europhys. Lett. 90, 55002 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Kalman, G. J., Kyrkos, S., Golden, K. I., Hartmann, P. & Donkó, Z. The roton minimum: is it a general feature of strongly correlated liquids? Contrib. Plasma Phys. 52, 219–223 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Dorheim, T., Moldabekov, Z., Vorberger, J., Kählert, H. & Bonitz, M. Electronic pair alignment and roton feature in the warm dense electron gas. Commun. Phys. 5, 304 (2022).

    Article 

    Google Scholar
     

  • Lu, H., Chen, B.-B., Wu, H.-Q., Sun, K. & Meng, Z. Y. Thermodynamic response and neutral excitations in integer and fractional quantum anomalous Hall states emerging from correlated flat bands. Phys. Rev. Lett. 132, 236502 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1010 (1934).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tanatar, B. & Ceperley, D. M. Ground state of the two-dimensional electron gas. Phys. Rev. B 39, 5005–5016 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • De Palo, S., Rapisarda, F. & Senatore, G. Excitonic condensation in a symmetric electron-hole bilayer. Phys. Rev. Lett. 88, 206401 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Spivak, B. & Kivelson, S. A. Phase intermediate between a two-dimensional electron liquid and Wigner crystal. Phys. Rev. B 70, 155114 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Hartmann, P., Donkó, Z. & Kalman, G. J. Structure and phase diagram of strongly-coupled bipolar charged-particle bilayers. Europhys. Lett. 72, 396–402 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lozovik, Y. E. & Yudson, V. I. A new mechanism for superconductivity: pairing between spatially separated electrons and holes. Sov. Phys. JETP 44, 738–753 (1976).


    Google Scholar
     

  • Balatsky, A. V., Joglekar, Y. N. & Littlewood, P. B. Dipolar superfluidity in electron-hole bilayer systems. Phys. Rev. Lett. 93, 266801 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Joglekar, Y. N., Balatsky, A, V. & Das Sarma, S. Wigner supersolid of excitons in electron-hole bilayers. Phys. Rev. B 74, 233302 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Glyde, H. R. & Griffin, A. Zero sound and atomiclike excitations: the nature of phonons and rotons in liquid 4He. Phys. Rev. Lett. 65, 1454–1457 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Filinov, A. & Bonitz, M. Collective and single-particle excitations in two-dimensional dipolar Bose gases. Phys. Rev. A 86, 063628 (2012).

    Article 
    ADS 

    Google Scholar
     

  • De Dycker, E. & Phariseau, P. On the LCAO-method for disordered materials. I. General theory. Physica 34, 325–332 (1967).

    Article 
    ADS 

    Google Scholar
     

  • De Dycker, E. & Phariseau, P. On the LCAO-method for disordered materials. II. Application to some simple models. Physica 35, 405–416 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Kim, J. et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ryu, S. H. et al. Pseudogap in a crystalline insulator doped by disordered metals. Nature 596, 68–73 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kiraly, B. et al. Anisotropic two-dimensional screening at the surface of black phosphorus. Phys. Rev. Lett. 123, 216403 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baumberger, F., Auwärter, W., Greber, T. & Osterwalder, J. Electron coherence in a melting lead monolayer. Science 306, 2221–2224 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rotenberg, E., Theis, W., Horn, K. & Gille, P. Quasicrystalline valence bands in decagonal AlNiCo. Nature 406, 602–605 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Corbae, P. et al. Observation of spin-momentum locked surface states in amorphous Bi2Se3. Nat. Mater. 22, 200–206 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pudalov, V. M., D’lorio, M., Kravchenko, S. V. & Campbell, J. W. Zero-magnetic-field collective insulator phase in a dilute 2D electron system. Phys. Rev. Lett. 70, 1866–1869 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hanein, Y. et al. Observation of the metal-insulator transition in two-dimensional n-type GaAs. Phys. Rev. B 58, R13338–R13340 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Solovyev, V. V. & Kukushkin, I. V. Renormalized Landau quasiparticle dispersion revealed by photoluminescence spectra from a two-dimensional Fermi liquid at the MgZnO/ZnO heterointerface. Phys. Rev. B 96, 115131 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chui, S. T. & Tanatar, B. Impurity effect on the two-dimensional-electron fluid-solid transition in zero field. Phys. Rev. Lett. 74, 458–461 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fogler, M. M., Koulakov, A. A. & Shklovskii, B. I. Ground state of a two-dimensional electron liquid in a weak magnetic field. Phys. Rev. B 54, 1853–1871 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reichhardt, C. J. O., Reichhardt, C. & Bishop, A. R. Structural transitions, melting, and intermediate phases for stripe- and clump-forming systems. Phys. Rev. E 82, 041502 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Pu, S., Balram, A. C., Taylor, J., Fradkin, E. & Papić, Z. Microscopic model for fractional quantum Hall nematics. Phys. Rev. Lett. 132, 236503 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chang, K. S., Sher, A., Petzinger, K. G. & Weisz, G. Density of states of liquid Cu. Phys. Rev. B 12, 5506–5513 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anderson, P. W. & McMillan, W. L. in Multiple-Scattering Theory and Resonances in Transition Metals (ed. Marshall, W.) 50–86 (Academic, 1967).

  • Schwartz, L. & Ehrenreich, H. Single-site approximation in the electronic theory of liquid metals. Ann. Phys. 64, 100–148 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morgan, G. J. Electron transport in liquid metals II. A model for the wave functions in liquid transition metals. J. Phys. C Solid State Phys. 2, 1454–1463 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Park, K. & Jain, J. K. Two-roton bound state in the fractional quantum Hall effect. Phys. Rev. Lett. 84, 5576–5579 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jung, S. W. et al. Black phosphorus as a bipolar pseudospin semiconductor. Nat. Mater. 19, 277–281 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Golden, K. I., Kalman, G. J., Hartmann, P. & Donkó, Z. Dynamics of two-dimensional dipole systems. Phys. Rev. E 82, 036402 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Kutlu, E., Narin, P., Lisesivdin, S. B. & Ozbay, E. Electronic and optical properties of black phosphorus doped with Au, Sn and I atoms. Philos. Mag. 98, 155–164 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fei, R. & Yang, L. Strain-engineering the anisotropic electrical conductance of few layer black phosphorus. Nano Lett. 14, 2884–2889 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chui, S. T. & Tanatar, B. Phase diagram of the two-dimensional quantum electron freezing with external impurities. Phys. Rev. B 55, 9330–9932 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tian, Z. et al. Isotropic charge screening of anisotropic black phosphorus revealed by potassium adatoms. Phys. Rev. B 100, 085440 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shirley, E. L., Terminello, L. J., Santoni, A. & Himpsel, F. J. Brillouin-zone-selection effects in graphite photoelectron angular distributions. Phys. Rev. B 51, 13614–13622 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moser, S. An experimentalist’s guide to the matrix element in angle resolved photoemission. J. Electron Spectros. Relat. Phenomena 214, 29–52 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *