• Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chao, W.-C. et al. High efficiency green InP quantum dot light-emitting diodes by balancing electron and hole mobility. Commun. Mater. 2, 96 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Q. et al. Quasi‐shell‐growth strategy achieves stable and efficient green InP quantum dot light‐emitting diodes. Adv. Sci. 9, 2200959 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Coe, S., Woo, W.-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–511 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, H. et al. Dipole–dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photon. 18, 186–191 (2024).

  • Meng, T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297–303 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dai, X., Deng, Y., Peng, X. & Jin, Y. Quantum‐dot light‐emitting diodes for large‐area displays: towards the dawn of commercialization. Adv. Mater. 29, 1607022 (2017).

    Article 

    Google Scholar
     

  • Madelung, O. Semiconductors: Group IV Elements and III-V Compounds (Springer Science & Business Media, 2012).

  • Yu, P. et al. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci. Appl. 11, 162 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, B., Tang, B., Fan, F. & Du, J. Transient absorption spectrometer using excitation by pulse current. CN Patent CN112683797B (2021).

  • Gao, Y. et al. Minimizing heat generation in quantum dot light-emitting diodes by increasing quasi-Fermi-level splitting. Nat. Nanotechnol. 18, 1168–1174 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klimov, V. I., Mikhailovsky, A. A., McBranch, D., Leatherdale, C. A. & Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287, 1011–1013 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klimov, V. I. Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Livache, C. et al. High-efficiency photoemission from magnetically doped quantum dots driven by multi-step spin-exchange Auger ionization. Nat. Photon. 16, 433–440 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Karpov, S. ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: a review. Opt. Quantum Electron. 47, 1293–1303 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ishioka, K., Barker, B. G. Jr, Yanagida, M., Shirai, Y. & Miyano, K. Direct observation of ultrafast hole injection from lead halide perovskite by differential transient transmission spectroscopy. J. Phys. Chem. Lett. 8, 3902–3907 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, K., East, J. R. & Haddad, G. I. Numerical modeling of abrupt heterojunctions using a thermionic-field emission boundary condition. Solid State Electron. 36, 321–330 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Walker, A., Kambili, A. & Martin, S. Electrical transport modelling in organic electroluminescent devices. J. Phys. Condens. Matter 14, 9825 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jung, S.-M. et al. Modelling charge transport and electro-optical characteristics of quantum dot light-emitting diodes. npj Comput. Mater. 7, 122 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Burrows, P. & Forrest, S. Electroluminescence from trap‐limited current transport in vacuum deposited organic light emitting devices. Appl. Phys. Lett. 64, 2285–2287 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scholz, S., Kondakov, D., Lussem, B. & Leo, K. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 115, 8449–8503 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mude, N. N., Khan, Y., Thuy, T. T., Walker, B. & Kwon, J. H. Stable ZnS electron transport layer for high-performance inverted cadmium-free quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 14, 55925–55932 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots. Adv. Opt. Mater. 7, 1801602 (2019).

    Article 

    Google Scholar
     

  • Moon, H. et al. Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem. Commun. 55, 13299–13302 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Iwasaki, Y., Motomura, G., Ogura, K. & Tsuzuki, T. Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials. Appl. Phys. Lett. 117, 111104 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gao, P., Zhang, Y., Qi, P. & Chen, S. Efficient InP green quantum-dot light-emitting diodes based on organic electron transport layer. Adv. Opt. Mater. 10, 2202066 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. Efficient and bright green InP quantum dot light-emitting diodes enabled by a self-assembled dipole interface monolayer. Nanoscale 15, 2837–2842 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, T. et al. Understanding and hindering the electron leakage in green InP quantum-dot light-emitting diodes. Adv. Photon. Res. 4, 2300146 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Q. et al. Bridging chloride anions enables efficient and stable InP green quantum-dot light-emitting diodes. Adv. Opt. Mater. 11, 2300659 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shin, S. et al. Fluoride-free synthesis strategy for luminescent InP cores and effective shelling processes via combinational precursor chemistry. Chem. Eng. J. 466, 143223 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Fan, Z., Liu, D., Zhang, Z. & Zou, B. Modified charge injection in green InP quantum dot light-emitting diodes utilizing a plasma-enhanced NiO buffer layer. J. Phys. Chem. C 128, 3985–3993 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Electric dipole modulation for boosting carrier recombination in green InP QLEDs under strong electron injection. Nanoscale Adv. 5, 385–392 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Boosting the efficiency and stability of green InP quantum dot light emitting diodes by interface dipole modulation. J. Mater. Chem. C 10, 8192 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Taylor, D. A. et al. Importance of surface functionalization and purification for narrow FWHM and bright green-emitting InP core-multishell quantum dots via a two-step growth process. Chem. Mater. 33, 4399–4407 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hunsche, S., Dekorsy, T., Klimov, V. & Kurz, H. Ultrafast dynamics of carrier-induced absorption changes in highly-excited CdSe nanocrystals. Appl. Phys. B 62, 3–10 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Kumar, B., Campbell, S. A. & Paul Ruden, P. Modeling charge transport in quantum dot light emitting devices with NiO and ZnO transport layers and Si quantum dots. J. Appl. Phys. 114, 044507 (2013).

  • Gao, X. & Yee, S. S. Hole capture cross section and emission coefficient of defect centers related to high-field-induced positive charges in SiO2 layers. Solid State Electron. 39, 399–403 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bian, Y. et al. Datasets for ‘Efficient green InP-based QD-LED by controlling electron injection and leakage’. Figshare https://doi.org/10.6084/m9.figshare.27682983 (2024).

  • Lee, T. et al. Highly efficient and bright inverted top-emitting InP quantum dot light-emitting diodes introducing a hole-suppressing interlayer. Small 15, 1905162 (2019).

  • Kim, J. et al. Realization of highly efficient InP quantum dot light-emitting diodes through in-depth investigation of exciton-harvesting layers. Adv. Opt. Mater. 11, 2300088 (2023).

  • Lee, S. H. et al. ZnSeTe quantum dots as an alternative to InP and their high-efficiency electroluminescence. Chem. Mater. 32, 5768–5775 (2020).

  • Yoon, S. Y. et al. Highly emissive green ZnSeTe quantum dots: effects of core size on their optical properties and comparison with InP counterparts. ACS Energy Lett. 8, 1131–1140 (2023).

  • Sun, L. et al. Efficient and stable multi‐color emissions of the coumarin modified Cs3LnCl6 lead‐free perovskite nanocrystals and led application. Adv. Mater. 36, 2310065 (2024).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *