Categories: NATURE

Dynamic transition and Galilean relativity of current-driven skyrmions


  • Baskaran, G. & Anderson, P. W. Gauge theory of high-temperature superconductors and strongly correlated Fermi systems. Phys. Rev. B 37, 580–583 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Emergent electromagnetism in solids. Phys. Scr. 2012, 014020 (2012).

    Article 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zang, J., Mostovoy, M., Han, J. H. & Nagaosa, N. Dynamics of skyrmion crystals in metallic thin films. Phys. Rev. Lett. 107, 136804 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kurumaji, T. et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirschberger, M. et al. High-field depinned phase and planar Hall effect in the skyrmion host Gd2PdSi3. Phys. Rev. B 101, 220401 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019).

    Article 

    Google Scholar
     

  • Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A Lond. Math. Phys. Sci. 392, 45–57 (1997).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagomé lattice: Chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065–R6068 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagaosa, N. Emergent inductor by spiral magnets. Jpn. J. Appl. Phys. 58, 120909 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yokouchi, T. et al. Emergent electromagnetic induction in a helical-spin magnet. Nature 586, 232–236 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsui, A., Nomoto, T. & Arita, R. Skyrmion-size dependence of the topological Hall effect: A real-space calculation. Phys. Rev. B 104, 174432 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kimbell, G., Kim, C., Wu, W., Cuoco, M. & Robinson, J. W. A. Challenges in identifying chiral spin textures via the topological Hall effect. Commun. Mater. 3, 19 (2022).

    Article 

    Google Scholar
     

  • Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Juge, R. et al. Current-driven skyrmion dynamics and drive-dependent skyrmion Hall effect in an ultrathin film. Phys. Rev. Appl. 12, 044007 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Peng, L. et al. Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet. Nat. Commun. 12, 6797 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirschberger, M. et al. Skyrmion phase and competing magnetic orders on a breathing kagomé lattice. Nat. Commun. 10, 5831 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khanh, N. D. et al. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nat. Nanotechnol. 15, 444–449 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Takagi, R. et al. Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound. Nat. Commun. 13, 1472 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okubo, T., Chung, S. & Kawamura, H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys. Rev. Lett. 108, 017206 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Leonov, A. O. & Mostovoy, M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun. 6, 8275 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Inosov, D. S. et al. Electronic structure and nesting-driven enhancement of the RKKY interaction at the magnetic ordering propagation vector in Gd2PdSi3 and Tb2PdSi3. Phys. Rev. Lett. 102, 046401 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayami, S. & Motome, Y. Multiple-Q instability by (d − 2)-dimensional connections of Fermi surfaces. Phys. Rev. B 90, 060402 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Z., Barros, K., Chern, G.-W., Maslov, D. L. & Batista, C. D. Resistivity minimum in highly frustrated itinerant magnets. Phys. Rev. Lett. 117, 206601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Iwasaki, J., Mochizuki, M. & Nagaosa, N. Universal current-velocity relation of skyrmion motion in chiral magnets. Nat. Commun. 4, 1463 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schütte, C., Iwasaki, J., Rosch, A. & Nagaosa, N. Inertia, diffusion, and dynamics of a driven skyrmion. Phys. Rev. B 90, 174434 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Metaxas, P. J. et al. Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, P. W. & Kim, Y. B. Hard superconductivity: theory of the motion of Abrikosov flux lines. Rev. Mod. Phys. 36, 39–43 (1964).

    Article 
    ADS 

    Google Scholar
     

  • Fröhlich, H. On the theory of superconductivity: the one-dimensional case. Proc. R. Soc. A Lond. Ser. Math. Phys. Eng. Sci. 223, 296–305 (1954).

    ADS 

    Google Scholar
     

  • Lee, P. A., Rice, T. M. & Anderson, P. W. Conductivity from charge or spin density waves. Solid State Commun. 14, 703–709 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Psaroudaki, C., Hoffman, S., Klinovaja, J. & Loss, D. Quantum dynamics of skyrmions in chiral magnets. Phys. Rev. X 7, 041045 (2017).


    Google Scholar
     

  • Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015).

    Article 

    Google Scholar
     

  • Birch, M. T. Dataset for: Dynamic transition and Galilean relativity of current-driven skyrmions. Zenodo https://doi.org/10.5281/zenodo.11408317 (2024).



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    Stock market implodes as Trump tariffs and recession nightmares spook investors

    The president and his economic officials have indicated they are willing to endure short-term pain…

    54 mins ago

    New DOJ proposal still calls for Google to divest Chrome, but allows for AI investments

    The US Department of Justice is still calling for Google to sell its web browser…

    2 days ago

    Have a Beautiful Weekend. | Cup of Jo

    What are you up to this weekend? I’m looking forward to spending time with my…

    2 days ago

    Are You Headed for FIRE or the Middle-Class Trap? (Finance Friday)

    If there’s an issue that keeps aspiring early retirees up at night, it’s the dreaded…

    2 days ago

    Thousands join Stand Up for Science rallies across the US

    Stand Up for Science rally in Washington Square Park in New York City on 7…

    2 days ago

    Always Remember Special Events With the Updated Dateminder

    At the start, the app syncs key dates from your contacts like birthdays and anniversaries.…

    2 days ago