• Carlsson, A. The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev. 11, 490–493 (1959).

    CAS 
    PubMed 

    Google Scholar
     

  • Ritz, M. C., Lamb, R. J., Goldberg, S. R. & Kuhar, M. J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237, 1219–1223 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Giros, B., Jaber, M., Jones, S. R., Wightman, R. M. & Caron, M. G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nair-Roberts, R. G. et al. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152, 1024–1031 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arias-Carrión, O. & Pŏppel, E. Dopamine, learning, and reward-seeking behavior. Acta Neurobiol. Exp. 67, 481–488 (2007).

    Article 

    Google Scholar
     

  • Steinberg, E. E. et al. A causal link between prediction errors, dopamine neurons and learning. Nat. Neurosci. 16, 966–973 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giros, B., El Mestikawy, S., Bertrand, L. & Caron, M. G. Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett. 295, 149–154 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, H., Wall, S. C. & Rudnick, G. Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J. Biol. Chem. 269, 7124–7130 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krueger, B. K. Kinetics and block of dopamine uptake in synaptosomes from rat caudate nucleus. J. Neurochem. 55, 260–267 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zomot, E. et al. Mechanism of chloride interaction with neurotransmitter:sodium symporters. Nature 449, 726–730 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Waldman, I. D. et al. Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity. Am. J. Hum. Genet. 63, 1767–1776 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gainetdinov, R. R. & Caron, M. G. Monoamine transporters: from genes to behavior. Annu. Rev. Pharmacol. Toxicol. 43, 261–284 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sulzer, D., Sonders, M. S., Poulsen, N. W. & Galli, A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog. Neurobiol. 75, 406–433 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciccarone, D. Stimulant abuse: pharmacology, cocaine, methamphetamine, treatment, attempts at pharmacotherapy. Prim. Care 38, 41–58 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mustaquim, D., Jones, C. M. & Compton, W. M. Trends and correlates of cocaine use among adults in the United States, 2006–2019. Addict. Behav. 120, 106950 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuhar, M. J., Ritz, M. C. & Boja, J. W. The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci. 14, 299–302 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woolverton, W. L., Hecht, G. S., Agoston, G. E., Katz, J. L. & Newman, A. H. Further studies of the reinforcing effects of benztropine analogs in rhesus monkeys. Psychopharmacology 154, 375–382 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newman, A. H., Allen, A. C., Izenwasser, S. & Katz, J. L. Novel 3 alpha-(diphenylmethoxy)tropane analogs: potent dopamine uptake inhibitors without cocaine-like behavioral profiles. J. Med. Chem. 37, 2258–2261 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rothman, R. B., Baumann, M. H., Prisinzano, T. E. & Newman, A. H. Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction. Biochem. Pharmacol. 75, 2–16 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desai, R. I., Kopajtic, T. A., Koffarnus, M., Newman, A. H. & Katz, J. L. Identification of a dopamine transporter ligand that blocks the stimulant effects of cocaine. J. Neurosci. 25, 1889–1893 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vocci, F. J., Acri, Jane & Elkashef, A. Medication development for addictive disorders: the state of the science. Am. J. Psychiatry 162, 1432–1440 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Biederman, J. Attention-deficit/hyperactivity disorder: a life-span perspective. J. Clin. Psychiatry 59, 4–16 (1998).

    PubMed 

    Google Scholar
     

  • Jaeschke, R. R., Sujkowska, E. & Sowa-Kućma, M. Methylphenidate for attention-deficit/hyperactivity disorder in adults: a narrative review. Psychopharmacology 238, 2667–2691 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volkow, N. D. et al. Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am. J. Psychiatry 155, 1325–1331 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solanto, M. V. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav. Brain Res. 94, 127–152 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Volkow, N. D. & Swanson, J. M. Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am. J. Psychiatry 160, 1909–1918 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, A. et al. Molecular basis for substrate recognition and transport of human GABA transporter GAT1. Nat. Struct. Mol. Biol. 30, 1012–1022 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, Y. et al. Transport mechanism and pharmacology of the human GlyT1. Cell 187, 1719–1732.e1714 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coleman, J. A. et al. Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. B. et al. The role of N-glycosylation in function and surface trafficking of the human dopamine transporter. J. Biol. Chem. 279, 21012–21020 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boudanova, E., Navaroli, D. M., Stevens, Z. & Melikian, H. E. Dopamine transporter endocytic determinants: carboxy terminal residues critical for basal and PKC-stimulated internalization. Mol. Cell. Neurosci. 39, 211–217 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fog, J. U. et al. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51, 417–429 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Navaroli, D. M. et al. The plasma membrane-associated GTPase Rin interacts with the dopamine transporter and is required for protein kinase C-regulated dopamine transporter trafficking. J. Neurosci. 31, 13758–13770 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volkow, N. D. et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J. Neurosci. 21, RC121 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gatley, S. J., Pan, D., Chen, R., Chaturvedi, G. & Ding, Y.-S. Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Sci. 58, PL231–PL239 (1996).

    Article 

    Google Scholar
     

  • Rothman, R. B. et al. GBR12909 antagonizes the ability of cocaine to elevate extracellular levels of dopamine. Pharmacol. Biochem. Behav. 40, 387–397 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, P. H. Biochemical and pharmacological characterization of [3H]GBR 12935 binding in vitro to rat striatal membranes: labeling of the dopamine uptake complex. J. Neurochem. 48, 1887–1896 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, P. H. The dopamine uptake inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur. J. Pharmacol. 166, 493–504 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heikkila, R. E. & Manzino, L. Behavioral properties of GBR 12909, GBR 13069 and GBR 13098: specific inhibitors of dopamine uptake. Eur. J. Pharmacol. 103, 241–248 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, P. H. The dopamine inhibitor GBR 12909: selectivity and molecular mechanism of action. Eur. J. Pharmacol. 166, 493–504 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiranita, T., Soto, P. L., Newman, A. H. & Katz, J. L. Assessment of reinforcing effects of benztropine analogs and their effects on cocaine self-administration in rats: comparisons with monoamine uptake inhibitors. J. Pharmacol. Exp. Ther. 329, 677–686 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kopajtic, T. A. et al. Dopamine transporter-dependent and -independent striatal binding of the benztropine analog JHW 007, a cocaine antagonist with low abuse liability. J. Pharmacol. Exp. Ther. 335, 703–714 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Velázquez-Sánchez, C., Ferragud, A., Murga, J., Cardá, M. & Canales, J. J. The high affinity dopamine uptake inhibitor, JHW 007, blocks cocaine-induced reward, locomotor stimulation and sensitization. Eur. Neuropsychopharmacol. 20, 501–508 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Katz, J. L., Kopajtic, T. A., Agoston, G. E. & Newman, A. H. Effects of N-substituted analogs of benztropine: diminished cocaine-like effects in dopamine transporter ligands. J. Pharmacol. Exp. Ther. 309, 650–660 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bisgaard, H. et al. The binding sites for benztropines and dopamine in the dopamine transporter overlap. Neuropharmacology 60, 182–190 (2011).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Beuming, T. et al. The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat. Neurosci. 11, 780–789 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niello, M. et al. Persistent binding at dopamine transporters determines sustained psychostimulant effects. Proc. Natl Acad. Sci. USA 120, e2114204120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desai, R. I., Kopajtic, T. A., French, D., Newman, A. H. & Katz, J. L. Relationship between in vivo occupancy at the dopamine transporter and behavioral effects of cocaine, GBR 12909 [1-{2-[bis-(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine], and benztropine analogs. J. Pharmacol. Exp. Ther. 315, 397–404 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorentla, B. K. & Vaughan, R. A. Differential effects of dopamine and psychoactive drugs on dopamine transporter phosphorylation and regulation. Neuropharmacology 49, 759–768 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • DeLano, W. L. Pymol: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40, 82–92 (2002).


    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *