• Felnagle, E. A. et al. Nonribosomal peptide synthetases involved in the production of medically relevant natural products. Mol. Pharm. 5, 191–211 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izoré, T. & Cryle, M. J. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Nat. Prod. Rep. 35, 1120–1139 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Reimer, J. M., Haque, A. S., Tarry, M. J. & Schmeing, T. M. Piecing together nonribosomal peptide synthesis. Curr. Opin. Struct. Biol. 49, 104–113 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hur, G. H., Vickery, C. R. & Burkart, M. D. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat. Prod. Rep. 29, 1074–1098 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, A., Re, R. N. & Burkart, M. D. Type II fatty acid and polyketide synthases: deciphering protein-protein and protein-substrate interactions. Nat. Prod. Rep. 35, 1029–1045 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. H., Li, K., Guntaka, N. S. & Bruner, S. D. Interdomain and intermodule organization in epimerization domain containing nonribosomal peptide synthetases. ACS Chem. Biol. 11, 2293–2303 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rausch, C., Hoof, I., Weber, T., Wohlleben, W. & Huson, D. H. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol. Biol. 7, 78 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanovic, A., Samel, S. A., Essen, L. O. & Marahiel, M. A. Crystal structure of the termination module of a nonribosomal peptide synthetase. Science. 321, 659–663 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Drake, E. J. et al. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 529, 235–238 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keating, T. A., Marshall, C. G., Walsh, C. T. & Keating, A. E. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat. Struct. Biol. 9, 522–526 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Tarry, M. J., Haque, A. S., Bui, K. H. & Schmeing, T. M. X-Ray crystallography and electron microscopy of cross- and multi-module nonribosomal peptide synthetase proteins reveal a flexible architecture. Structure. 25, 783–793 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreitler, D. F. et al. The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase. Nat. Commun. 10, 3432 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reimer, J. M., Aloise, M. N., Harrison, P. M. & Schmeing, T. M. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529, 239–242 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reimer, J. M. et al. Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility. Science. 366, eaaw4388 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bloudoff, K., Rodionov, D. & Schmeing, T. M. Crystal structures of the first condensation domain of CDA synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide synthetases. J. Mol. Biol. 425, 3137–3150 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izoré, T. et al. Structures of a non-ribosomal peptide synthetase condensation domain suggests the basis of substrate selectivity. Nat. Commun. 12, 2511 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, C. T. Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Nat. Prod. Rep. 33, 127–135 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kohli, R. M., Walsh, C. T. & Burkart, M. D. Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature 418, 658–661 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hur, G. H. et al. Crosslinking studies of protein-protein interactions in nonribosomal peptide biosynthesis. Chem. Biol. 16, 372–381 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devaraj, N. K., Weissleder, R. & Hilderbrand, S. A. Tetrazine-based cycloadditions: application to pretargeted live cell imaging. Bioconjug. Chem. 19, 2297–2299 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, L. et al. Site-selective protein modification via disulfide rebridging for fast tetrazine/trans-cyclooctene bioconjugation. Org. Biomol. Chem. 18, 1140–1147 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, W. G. et al. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed. 41, 1053–1057 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Quadri, L. E. et al. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry. 37, 1585–1595 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corpuz, J. C., Sanlley, J. O. & Burkart, M. D. Protein–protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains. Synth. Syst. Biotechnol. 7, 677–688 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahn, M. & Stachelhaus, T. Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. Proc. Natl Acad. Sci. USA 101, 15585–15590 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marahiel, M. A. A structural model for multimodular NRPS assembly lines. Nat. Prod. Rep. 33, 136–140 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fage, C. D. et al. Communication breakdown: dissecting the COM interfaces between the subunits of nonribosomal peptide synthetases. ACS Catal. 11, 10802–10813 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dehling, E. et al. Mapping of the communication-mediating interface in nonribosomal peptide synthetases using a genetically encoded photocrosslinker supports an upside-down helix-hand motif. J. Mol. Biol. 428, 4345–4360 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karakama, S., Suzuki, S. & Kino, K. One-pot synthesis of 2,5-diketopiperazine with high titer and versatility using adenylation enzyme. Appl. Microbiol. Biotechnol. 106, 4469–4479 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blackman, M. L., Royzen, M. & Fox, J. M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 130, 13518–13519 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, W. E. et al. Developing crosslinkers specific for epimerization domain in NRPS initiation modules to evaluate mechanism. RSC Chem. Biol. 3, 312–319 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Structural basis of nonribosomal peptide macrocyclization in fungi. Nat. Chem. Biol. 12, 1001–1003 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Catalytic trajectory of a dimeric nonribosomal peptide synthetase subunit with an inserted epimerase domain. Nat. Commun. 13, 592 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samel, S. A., Schoenafinger, G., Knappe, T. A., Marahiel, M. A. & Essen, L. O. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure. 15, 781–792 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samel, S. A., Czodrowski, P. & Essen, L. O. Structure of the epimerization domain of tyrocidine synthetase A. Acta Crystallogr. D 70, 1442–1152 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Feldberg, A. L., Mayerthaler, F., Rüschenbaum, J., Kröger, J. & Mootz, H. D. Carrier protein interaction with competing adenylation and epimerization domains in a nonribosomal peptide synthetase analyzed by FRET. Angew. Chem. Int. Ed. 63, e202317753 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mootz, H. D. & Marahiel, M. A. The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J. Bacteriol. 179, 6843–6850 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chalut, C., Botella, L., de Sousa-D’Auria, C., Houssin, C. & Guilhot, C. The nonredundant roles of two 4′-phosphopantetheinyl transferases in vital processes of Mycobacteria. Proc. Natl Acad. Sci. USA 103, 8511–8516 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Worthington, A. S. & Burkart, M. D. One-pot chemo-enzymatic synthesis of reporter-modified proteins. Org. Biomol. Chem. 4, 44–46 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Casañal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meng, E. C. et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, F. et al. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr. D 73, 112–122 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vagin, A. A. et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D 60, 2184–2195 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *