Salomen, L. M., Ellermann, M. & Diederich, F. Aromatic rings in chemical and biological recognition: energetics and structures. Angew. Chem. Int. Edn 50, 4808–4842 (2011).
Locke, G. M., Bernhard, S. S. R. & Senge, M. O. Nonconjugated hydrocarbons as rigid‐linear motifs: isosteres for material sciences and bioorganic and medicinal chemistry. Chem. Eur. J. 25, 4590–4647 (2019).
Nishihara, Y. (ed.) Applied Cross-Coupling Reactions Vol. 80 (Springer, 2013).
Dalvie, D., Nair, S., Kang, P. & Loi., C.-M. in Metabolism, Pharmacokinetics and Toxicity of Functional Groups (ed. Smith, D. A.) 275–327 (Royal Society of Chemistry, 2010).
Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).
Ritchie, T. J. & Macdonald, S. F. J. The impact of aromatic ring count on compound developability—are too many aromatic rings a liability in drug design? Drug Discov. Today 14, 1011–1020 (2009).
Lovering, F. Escape from Flatland 2: complexity and promiscuity. Med. Chem. Commun. 4, 515–519 (2013).
Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next? Org. Biomol. Chem. 17, 2839–2849 (2019).
Stepan, F. F. et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor. J. Med. Chem. 55, 3414–3424 (2012).
Frank, N. et al. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 611, 721–726 (2022).
Iida, T. et al. Practical and facile access to bicyclo[3.1.1]heptanes: potent bioisosteres of meta-substituted benzenes. J. Am. Chem. Soc. 144, 21848–21852 (2022).
Wiesenfeldt, M. P. et al. General access to cubanes as benzene bioisosteres. Nature 618, 513–518 (2023).
Kazi, N., Aublette, M. C., Allinson, S. L. & Coote, S. C. A practical synthesis of 1,3-disubstituted cubane derivatives. Chem. Commun. 59, 7971–7973 (2023).
Yang, Y. et al. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat. Chem. 13, 950–955 (2021).
Rigotti, T. & Bach, T. Bicyclo[2.1.1]hexanes by visible light-driven intramolecular crossed [2 + 2] photocycloadditions. Org. Lett. 24, 8821–8825 (2022).
Levterov, V. V., Panasyuk, Y., Pivnytska, V. O. & Mykhailiuk, P. K. Water‐soluble non‐classical benzene mimetics. Angew. Chem. Int. Edn 59, 7161–7167 (2020).
Levterov, V. V. et al. 2‐Oxabicyclo[2.1.1]hexanes: synthesis, properties, and validation as bioisosteres of ortho‐ and meta‐benzenes. Angew. Chem. Int. Edn 63, e202319831 (2024).
Zhao, J.-X. et al. 1,2-Difunctionalized bicyclo[1.1.1]pentanes: long–sought-after mimetics for ortho/meta-substituted arenes. Proc. Natl Acad. Sci. USA 118, e2108881118 (2021).
Epplin, R. C. et al. [2]-Ladderanes as isosteres for meta-substituted aromatic rings and rigidified cyclohexanes. Nat. Commun. 13, 6056 (2022).
Smith, E. et al. Silver(I)-catalyzed synthesis of cuneanes from cubanes and their investigation as isosteres. J. Am. Chem. Soc. 145, 16365–16373 (2023).
Son, J.-Y. et al. Exploring cuneanes as potential benzene isosteres and energetic materials: scope and mechanistic investigations into regioselective rearrangements from cubanes. J. Am. Chem. Soc. 145, 16355–16364 (2023).
Fujiwara, K. et al. Biological evaluation of isosteric applicability of 1,3-substituted cuneanes as m-substituted benzenes enabled by selective isomerization of 1,4-substituted cubanes. Chem. Eur. J. 30, e202303548 (2023).
Nguyen, L. A., He, H. & Pham-Huy, C. Chiral drugs: an overview. Int. J. Biomed. Sci. 2, 85–100 (2006).
de Groot, C. O. et al. A cell biologist’s field guide to aurora kinase inhibitors. Front. Oncol. 5, 285 (2015).
Lake, E. W. et al. Quantitative conformational profiling of kinase inhibitors reveals origins of selectivity for Aurora kinase activation states. Proc. Natl Acad. Sci. USA 115, E11894–E11903 (2018).
Martin, H.-D. & Mayer, B. Proximity effects in organic chemistry—the photoelectron spectroscopic investigation of non-bonding and transannular interactions. Angew. Chem. Int. Edn 22, 283–314 (1983).
Houk, K. N. et al. Ionization potentials, electron affinities, and molecular orbitals of 2-substituted norbornadienes. Theory of 1,2 and homo-1,4 carbene cycloaddition selectivities. J. Am. Chem. Soc. 105, 5563–5569 (1983).
Winstein, S. & Shatavsky, M. 2,6-Homoconjugate addition to bicycloheptadiene. Chem. Ind. 1956, 56–57 (1956).
Matteson, D. S. & Waldbillig, J. O. A preferred inversion in an electrophilic displacement: mercurideboronation of exo- and endo-5-norbornene-2-boronic acids. J. Am. Chem. Soc. 85, 1019–1020 (1963).
Tang, W. et al. Efficient monophosphorus ligands for palladium-catalyzed Miyaura borylation. Org. Lett. 13, 1366–1369 (2011).
Liang, H. & Morken, J. P. Stereospecific transformations of alkylboronic esters enabled by direct boron-to-zinc transmetalation. J. Am. Chem. Soc. 145, 9976–9981 (2023).
Xu, N., Liang, H. & Morken, J. P. Copper-catalyzed stereospecific transformations of alkylboronic esters. J. Am. Chem. Soc. 144, 11546–11552 (2022).
Mlynarski, S. N., Karns, A. S. & Morken, J. P. Direct stereospecific amination of alkyl and aryl pinacol boronates. J. Am. Chem. Soc. 134, 16449–16451 (2012).
Sadhu, K. M. & Matteson, D. S. (Chloromethyl)lithium: efficient generation and capture by boronic esters and a simple preparation of diisopropyl (chloromethyl)boronate. Organometallics 4, 1687–1689 (1985).
Xu, N., Kong, Z., Wang, J. Z., Lovinger, G. J. & Morken, J. P. Copper-catalyzed coupling of alkyl vicinal bis(boronic esters) to an array of electrophiles. J. Am. Chem. Soc. 144, 17815–17823 (2022).
Zhang, M., Lee, P. S., Allais, C., Singer, R. A. & Morken, J. P. Desymmetrization of vicinal bis(boronic) esters by enantioselective Suzuki–Miyaura cross-coupling reaction. J. Am. Chem. Soc. 145, 8308–8313 (2023).
Chen, C., Hou, L., Cheng, M., Su, J. & Tong, X. Palladium(0)‐catalyzed iminohalogenation of alkenes: synthesis of 2‐halomethyl dihydropyrroles and mechanistic insights into the alkyl halide bond formation. Angew. Chem. Int. Edn 54, 3092–3096 (2015).
Chen, X. et al. Pd(0)-catalyzed asymmetric carbohalogenation: H-bonding-driven C(sp3)–halogen reductive elimination under mild conditions. J. Am. Chem. Soc. 143, 1924–1931 (2021).
McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 111, 2981–3019 (2011).
Saunders, M., Laidig, K. E. & Wolfsberg, M. Theoretical calculation of equilibrium isotope effects using ab initio force constants: application to NMR isotope perturbation studies. J. Am. Chem. Soc. 111, 8989–8994 (1989).
Franz, D. E., Singleton, D. A. & Snyder, J. P. 13C kinetic isotope effects for the addition of lithium dibutylcuprate to cyclohexenone. Reductive elimination is rate-determining. J. Am. Chem. Soc. 119, 3383–3384 (1997).
Kathuria, S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9, 76–81 (2003).
Piomelli, D. et al. Pharmacological profile of the selective FAAH inhibitor KDS‐4103 (URB597). CNS Drug Rev. 12, 21–38 (2006).
Van Esbroeck, A. C. M. et al. Activity-based protein profiling reveals off-target proteins of the FAAH inhibitor BIA 10-2474. Science 356, 1084–1087 (2017).
Chen, J. K. I only have eye for ewe: the discovery of cyclopamine and development of Hedgehog pathway-targeting drugs. Nat. Prod. Rep. 33, 595–601 (2016).
Pan, S. et al. Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med. Chem. Lett. 1, 130–134 (2010).
Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).
Jain, N. & Yalkowsky, S. H. Estimation of the aqueous solubility I: application to organic nonelectrolytes. J. Pharm. Sci. 90, 234–252 (2001).
Nicolaou, K. C. et al. Synthesis and biopharmaceutical evaluation of imatinib analogues featuring unusual structural motifs. ChemMedChem 11, 31–37 (2016).
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).