• Feng, X. et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 597, 516–521 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, L. T. et al. Fire and biodiversity in the Anthropocene. Science 370, eabb0355 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peterson, D. A. et al. Australia’s Black Summer pyrocumulonimbus super outbreak reveals potential for increasingly extreme stratospheric smoke events. npj Clim. Atmos. Sci. 4, 38 (2021).

    Article 

    Google Scholar
     

  • Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Penman, T. D., Clarke, H., Gibson, R. K., Collins, L. & Nolan, R. H. in Australia’s Megafires: Biodiversity Impacts and Lessons From 2019–2020 (eds Rumpff, L. et al.) 42–59 (CSIRO, 2023).

  • Ellis, T. M., Bowman, D. M., Jain, P., Flannigan, M. D. & Williamson, G. J. Global increase in wildfire risk due to climate‐driven declines in fuel moisture. Global Change Biol. 28, 1544–1559 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Senande-Rivera, M., Insua-Costa, D. & Miguez-Macho, G. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nat. Commun. 13, 1208 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cunningham, C. X., Williamson, G. J. & Bowman, D. M. J. S. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. 8, 1420–1425 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Wildfire graphs. Canadian Interagency Forest Fire Centre https://ciffc.net/statistics (2023).

  • Doherty, T. S., Macdonald, K. J., Nimmo, D. G., Santos, J. L. & Geary, W. L. Shifting fire regimes cause continent-wide transformation of threatened species habitat. Proc. Natl Acad. Sci. USA 121, e2316417121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legge, S., Rumpff, L., Garnett, S. T. & Woinarski, J. C. Z. Loss of terrestrial biodiversity in Australia: magnitude, causation, and response. Science 381, 622–631 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gallagher, R. V. et al. High fire frequency and the impact of the 2019–2020 megafires on Australian plant diversity. Divers. Distrib. 27, 1166–1179 (2021).

    Article 

    Google Scholar
     

  • Geary, W. L. et al. Responding to the biodiversity impacts of a megafire: a case study from south-eastern Australia’s Black Summer. Divers. Distrib. 28, 463–478 (2022).

    Article 

    Google Scholar
     

  • Legge, S. et al. The conservation impacts of ecological disturbance: time-bound estimates of population loss and recovery for fauna affected by the 2019–2020 Australian megafires. Global Ecol. Biogeogr. 31, 2085–2104 (2022).

    Article 

    Google Scholar
     

  • Driscoll, D. A. Biodiversity impacts of the 2019-20 Australian megafires. YouTube https://youtu.be/kCPjowmxH3Q (2024).

  • Steel, Z. L., Fogg, A. M., Burnett, R., Roberts, L. J. & Safford, H. D. When bigger isn’t better—implications of large high-severity wildfire patches for avian diversity and community composition. Divers. Distrib. 28, 439–453 (2022).

    Article 

    Google Scholar
     

  • Keith, D. A. et al. Fire-related threats and transformational change in Australian ecosystems. Global Ecol. Biogeogr. 31, 2070–2084 (2022).

    Article 

    Google Scholar
     

  • Enright, N. J., Fontaine, J. B., Bowman, D., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).

    Article 

    Google Scholar
     

  • Haslem, A. et al. Time-since-fire and inter-fire interval influence hollow availability for fauna in a fire-prone system. Biol. Conserv. 152, 212–221 (2012).

    Article 

    Google Scholar
     

  • Hale, S. et al. Evidence that post-fire recovery of small mammals occurs primarily via in situ survival. Divers. Distrib. 28, 404–416 (2022).

    Article 

    Google Scholar
     

  • Lingua, E. et al. Post-fire restoration and deadwood management: microsite dynamics and their impact on natural regeneration. Forests 14, 1820 (2023).

    Article 

    Google Scholar
     

  • Allen, A. G., Roehrs, Z. P., Seville, R. S. & Lanier, H. C. Competitive release during fire succession influences ecological turnover in a small mammal community. Ecology 103, e3733 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Queiroz, E. A. et al. Reduced predation by arthropods and higher herbivory in burned Amazonian forests. Biotropica 54, 1052–1060 (2022).

    Article 

    Google Scholar
     

  • Stone, Z. L., Maron, M. & Tasker, E. Reduced fire frequency over three decades hastens loss of the grassy forest habitat of an endangered songbird. Biol. Conserv. 270, 109570 (2022).

    Article 

    Google Scholar
     

  • von Takach, B. et al. Long-unburnt habitat is critical for the conservation of threatened vertebrates across Australia. Landscape Ecol. 37, 1469–1482 (2022).

    Article 

    Google Scholar
     

  • Robinson, N. M., Leonard, S. W. J., Bennett, A. F. & Clarke, M. F. Refuges for birds in fire-prone landscapes: the influence of fire severity and fire history on the distribution of forest birds. For. Ecol. Manage. 318, 110–121 (2014).

    Article 

    Google Scholar
     

  • Ramiadantsoa, T., Ratajczak, Z. & Turner, M. G. Regeneration strategies and forest resilience to changing fire regimes: insights from a Goldilocks model. Ecology 104, e4041 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • van Mantgem, P. J. et al. Climatic stress increases forest fire severity across the western United States. Ecol. Lett. 16, 1151–1156 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Nolan, R. H. et al. Limits to post-fire vegetation recovery under climate change. Plant Cell Environ. 44, 3471–3489 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Connell, J., Hall, M. A., Nimmo, D. G., Watson, S. J. & Clarke, M. F. Fire, drought and flooding rains: the effect of climatic extremes on bird species’ responses to time since fire. Divers. Distrib. 28, 417–438 (2022).

    Article 

    Google Scholar
     

  • Lindenmayer, D. B. & Ough, K. Salvage logging in the montane ash eucalypt forests of the Central Highlands of Victoria and its potential impacts on biodiversity. Conserv. Biol. 20, 1005–1015 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foxcroft, L. C., Richardson, D. M., Pyšek, P. & Genovesi, P. in Plant Invasions in Protected Areas: Patterns, Problems and Challenges (eds Foxcroft, L. C. et al.) 621–639 (Springer Netherlands, 2013).

  • White, D. J. & Vesk, P. A. Fire and legacy effects of logging on understorey assemblages in wet-sclerophyll forests. Aust. J. Bot. 67, 341–357 (2019).

    Article 

    Google Scholar
     

  • Janousek, W. M. & Dreitz, V. J. Testing Huston’s dynamic equilibrium model along fire and forest productivity gradients using avian monitoring data. Divers. Distrib. 26, 1715–1726 (2020).

    Article 

    Google Scholar
     

  • Mahony, M. et al. A trait-based analysis for predicting impact of wildfires on frogs. Aust. Zool. 42, 326–351 (2022).

    Article 

    Google Scholar
     

  • Scheele, B. C. et al. Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians. Conserv. Biol. 28, 1195–1205 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • González, T. M., González-Trujillo, J. D., Muñoz, A. & Armenteras, D. Effects of fire history on animal communities: a systematic review. Ecol. Process. 11, 11 (2022).

    Article 

    Google Scholar
     

  • Santos, J. L. et al. Beyond inappropriate fire regimes: a synthesis of fire-driven declines of threatened mammals in Australia. Conserv. Lett. 15, e12905 (2022).

    Article 

    Google Scholar
     

  • Chard, M. et al. Time since fire influences macropod occurrence in a fire-prone coastal ecosystem. Austral Ecol. 47, 507–518 (2022).

    Article 

    Google Scholar
     

  • Santos, J. L. et al. A demographic framework for understanding fire-driven reptile declines in the ‘land of the lizards’. Global Ecol. Biogeogr. 31, 2105–2119 (2022).

    Article 

    Google Scholar
     

  • Bieber, B. V. et al. Increasing prevalence of severe fires change the structure of arthropod communities: evidence from a meta-analysis. Funct. Ecol. 37, 2096–2109 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Plumanns-Pouton, E. S., Swan, M. H., Penman, T. D., Collins, L. & Kelly, L. T. Time since fire shapes plant immaturity risk across fire severity classes. Fire Ecol. 19, 25 (2023).

    Article 

    Google Scholar
     

  • Nimmo, D. G., Carthey, A. J. R., Jolly, C. J. & Blumstein, D. T. Welcome to the Pyrocene: animal survival in the age of megafire. Global Change Biol. 27, 5684–5693 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nyström, M. & Folke, C. Spatial resilience of coral reefs. Ecosystems 4, 406–417 (2001).

    Article 

    Google Scholar
     

  • Mellin, C., Aaron MacNeil, M., Cheal, A. J., Emslie, M. J. & Julian Caley, M. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Collins, L. et al. Fuel reduction burning reduces wildfire severity during extreme fire events in south-eastern Australia. J. Environ. Manage. 343, 118171 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Penman, T. D. et al. Prescribed burning: how can it work to conserve the things we value? Int. J. Wildland Fire 20, 721–733 (2011).

    Article 

    Google Scholar
     

  • Lindenmayer, D., Zylstra, P. & Yebra, M. Adaptive wildfire mitigation approaches. Science 377, 1163–1164 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindenmayer, D., Taylor, C., Bowd, E. & Zylstra, P. What did it used to look like? A case study from tall, wet mainland Mountain Ash forests prior to British invasion. Austral Ecol. 49, e13520 (2024).

    Article 

    Google Scholar
     

  • Noss, R. F., Franklin, J. F., Baker, W. L., Schoennagel, T. & Moyle, P. B. Managing fire-prone forests in the western United States. Front. Ecol. Environ. 4, 481–487 (2006).

    Article 

    Google Scholar
     

  • DellaSala, D. A., Baker, B. C., Hanson, C. T., Ruediger, L. & Baker, W. Have western USA fire suppression and megafire active management approaches become a contemporary Sisyphus? Biol. Conserv. 268, 109499 (2022).

    Article 

    Google Scholar
     

  • Prober, S. M., Yuen, E., O’Connor, M. H. & Schultz, L. Ngadju kala: Australian Aboriginal fire knowledge in the Great Western Woodlands. Austral Ecol. 41, 716–732 (2016).

    Article 

    Google Scholar
     

  • Hoffman, K. M. et al. Conservation of Earth’s biodiversity is embedded in Indigenous fire stewardship. Proc. Natl Acad. Sci. USA 118, 6 (2021).

    Article 

    Google Scholar
     

  • Nimmo, D. G. et al. Predicting the century-long post-fire responses of reptiles. Global Ecol. Biogeogr. 21, 1062–1073 (2012).

    Article 

    Google Scholar
     

  • Mahood, A. L., Koontz, M. J. & Balch, J. K. Fuel connectivity, burn severity, and seed bank survivorship drive ecosystem transformation in a semiarid shrubland. Ecology 104, e3968 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Miritis, V., Dickman, C. R., Nimmo, D. G. & Doherty, T. S. After the ‘Black Summer’ fires: faunal responses to megafire depend on fire severity, proportional area burnt and vegetation type. J. Appl. Ecol. 61, 63–75 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lindenmayer, D. B. et al. Testing hypotheses associated with bird responses to wildfire. Ecol. Appl. 18, 1967–1983 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Heard, G. W. et al. Drought, fire, and rainforest endemics: a case study of two threatened frogs impacted by Australia’s “Black Summer”. Ecol. Evol. 13, e10069 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsh, J. R. et al. in Australia’s Megafires (eds Rumpff, L. et al.) 141–153 (CSIRO, 2023).

  • Meinshausen, M. et al. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 604, 304–309 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Linley, G. D. et al. What do you mean, ‘megafire’? Global Ecol. Biogeogr. 31, 1906–1922 (2022).

    Article 

    Google Scholar
     

  • Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evolut. 4, 1321-+ (2020).

    Article 

    Google Scholar
     

  • Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article 

    Google Scholar
     

  • Viechtbauer, W. Calculate effect sizes and outcome measures. GitHub https://wviechtb.github.io/metafor/reference/escalc.html (2024).

  • Morris, S. B. & DeShon, R. P. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological Methods 7, 105–125 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Hedges, L. V. Distribution theory for glass’s estimator of effect size and related estimators. J. Educ. Stat. 6, 107–128 (1981).

    Article 

    Google Scholar
     

  • Eales, J. et al. What is the effect of prescribed burning in temperate and boreal forest on biodiversity, beyond pyrophilous and saproxylic species? A systematic review. Environ. Evid. 7, 19 (2018).

    Article 

    Google Scholar
     

  • Takeshima, N. et al. Which is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Med. Res. Method. 14, 30 (2014).

    Article 

    Google Scholar
     

  • user603. Detecting outliers in count data, URL (version: 2020-08-28). Stack Exchange https://stats.stackexchange.com/q/56404 (2020).

  • Pebesma, E. & Bivand, R. Spatial Data Science: With Applications in R (Chapman and Hall/CRC, 2023).

  • Cuijpers, P., Weitz, E., Cristea, I. A. & Twisk, J. Pre-post effect sizes should be avoided in meta-analyses. Epidemiol. Psychiatr. Sci. 26, 364–368 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  • Pappalardo, P. et al. Comparing traditional and Bayesian approaches to ecological meta-analysis. Methods Ecol. Evol. 11, 1286–1295 (2020).

    Article 

    Google Scholar
     

  • Pustejovsky, J. E. & Tipton, E. Meta-analysis with robust variance estimation: expanding the range of working models. Prev. Sci. 23, 425–438 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cheung, M. W. L. A guide to conducting a meta-analysis with non-independent effect sizes. Neuropsychol. Rev. 29, 387–396 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muff, S., Nilsen, E. B., O’Hara, R. B. & Nater, C. R. Rewriting results sections in the language of evidence. Trends Ecol. Evol. 37, 203–210 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Gibson, R. K. & Hislop, S. Signs of resilience in resprouting Eucalyptus forests, but areas of concern: 1 year of post-fire recovery from Australia’s Black Summer of 2019–2020. Int. J. Wildland Fire 31, 545–557 (2022).

    Article 

    Google Scholar
     

  • NSW Department of Climate Change, Energy, the Environment and Water. Fire Extent and Severity Mapping (FESM). NSW Government https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm (2023).

  • Department of Environment, Land, Water and Planning, Victorian Government. Fire severity map of the major fires in Gippsland and north east Victoria in 2019/20 (version 1.0). State Government of Victoria https://discover.data.vic.gov.au/dataset/fire-severity-map-of-the-major-fires-in-gippsland-and-north-east-victoria-in-2019-20-version-1- (2020).

  • Gallagher, R. V. et al. An integrated approach to assessing abiotic and biotic threats to post-fire plant species recovery: lessons from the 2019–2020 Australian fire season. Global Ecol. Biogeogr. 31, 2056–2069 (2022).

    Article 

    Google Scholar
     

  • McKee, T. B., Doesken, N. J. & Kleist, J. R. The relationship of drought frequency and duration to time scales. In Proc. 8th Conference on Applied Climatology 1993 179–183 (American Meteorological Society, 1993).

  • ABARES. The Australian Land Use and Management Classification Version 8 (Australian Bureau of Agricultural and Resource Economics and Sciences, 2016).

  • Keith, D. A. & Simpson, C. C. Vegetation formations and classes of NSW (version 3.03–200m Raster). NSW Government https://datasets.seed.nsw.gov.au/dataset/vegetation-classes-of-nsw-version-3-03-200m-raster-david-a-keith-and-christopher-c-simpc0917 (2017).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *