• Walton, J. C., Weil, Z. M. & Nelson, R. J. Influence of photoperiod on hormones, behavior, and immune function. Front. Neuroendocrinol. 32, 303–319 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, R. & Volkow, N. D. Seasonality of brain function: role in psychiatric disorders. Transl. Psychiatry 13, 65 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forni, D. et al. Genetic adaptation of the human circadian clock to day-length latitudinal variations and relevance for affective disorders. Genome Biol. 15, 499 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Depner, C. M., Stothard, E. R. & Wright, K. P. Metabolic consequences of sleep and circadian disorders. Curr. Diab. Rep. 14, 507 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tackenberg, M. C., Hughey, J. J. & McMahon, D. G. Optogenetic stimulation of VIPergic SCN neurons induces photoperiodic‐like changes in the mammalian circadian clock. Eur. J. Neurosci. 54, 7063–7071 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porcu, A. et al. Seasonal changes in day length induce multisynaptic neurotransmitter switching to regulate hypothalamic network activity and behavior. Sci. Adv. 8, eabn9867 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okaty, B. W. et al. Multi-scale molecular deconstruction of the serotonin neuron system. Neuron 88, 774–791 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, S. et al. The paraventricular thalamus is a critical thalamic area for wakefulness. Science 362, 429–434 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hastings, M. H., Maywood, E. S. & Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19, 453–469 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abrahamson, E. E. & Moore, R. Y. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 916, 172–191 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dopico, X. C. et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat. Commun. 6, 7000 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nassan, M. & Videnovic, A. Circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol. 18, 7–24 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chellappa, S. L., Vujovic, N., Williams, J. S. & Scheer, F. A. J. L. Impact of circadian disruption on cardiovascular function and disease. Trends Endocrinol. Metab. 30, 767–779 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dulcis, D., Jamshidi, P., Leutgeb, S. & Spitzer, N. C. Neurotransmitter switching in the adult brain regulates behavior. Science 340, 449–453 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muzerelle, A., Scotto-Lomassese, S., Bernard, J. F., Soiza-Reilly, M. & Gaspar, P. Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Struct. Funct. 221, 535–561 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer-Bernstein, E. L. & Morin, L. P. Electrical stimulation of the median or dorsal raphe nuclei reduces light-induced FOS protein in the suprachiasmatic nucleus and causes circadian activity rhythm phase shifts. Neuroscience 92, 267–279 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glass, J. D., Grossman, G. H., Farnbauch, L. & DiNardo, L. Midbrain raphe modulation of nonphotic circadian clock resetting and 5-HT release in the mammalian suprachiasmatic nucleus. J. Neurosci. 23, 7451–7460 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, V. M., Jeffers, R. T. & Antle, M. C. Serotonergic enhancement of circadian responses to light: role of the raphe and intergeniculate leaflet. Eur. J. Neurosci. 42, 2805–2817 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Meyer-Bernstein, E. L., Blanchard, J. H. & Morin, L. P. The serotonergic projection from the median raphe nucleus to the suprachiasmatic nucleus modulates activity phase onset, but not other circadian rhythm parameters. Brain Res. 755, 112–120 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malek, Z. S. & Labban, L. M. Photoperiod regulates the daily profiles of tryptophan hydroxylase-2 gene expression the raphe nuclei of rats. Int. J. Neurosci. 131, 1155–1161 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Green, N. H., Jackson, C. R., Iwamoto, H., Tackenberg, M. C. & McMahon, D. G. Photoperiod programs dorsal raphe serotonergic neurons and affective behaviors. Curr. Biol. 25, 1389–1394 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majrashi, N. A., Ahearn, T. S. & Waiter, G. D. Brainstem volume mediates seasonal variation in depressive symptoms: A cross sectional study in the UK Biobank cohort. Sci. Rep. 10, 3592 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen, P. et al. Redefining the serotonergic system by genetic lineage. Nat. Neurosci. 11, 417–419 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bang, S. J., Jensen, P., Dymecki, S. M. & Commons, K. G. Projections and interconnections of genetically defined serotonin neurons in mice: networks of rhombomere-specific serotonin neurons. Eur. J. Neurosci. 35, 85–96 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, H.-L. et al. Dorsal raphe dual serotonin-glutamate neurons drive reward by establishing excitatory synapses on VTA mesoaccumbens dopamine neurons. Cell Rep. 26, 1128–1142.e7 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360–1374 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sengupta, A., Bocchio, M., Bannerman, D. M., Sharp, T. & Capogna, M. Control of amygdala circuits by 5-HT neurons via 5-HT and glutamate cotransmission. J. Neurosci. 37, 1785–1796 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malek, Z. S., Sage, D., Pévet, P. & Raison, S. Daily rhythm of tryptophan hydroxylase-2 messenger ribonucleic acid within raphe neurons is induced by corticoid daily surge and modulated by enhanced locomotor activity. Endocrinology 148, 5165–5172 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sánchez, S. et al. Circadian variations of serotonin in plasma and different brain regions of rats. Mol. Cell. Biochem. 317, 105–111 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Tervo, D. G. R. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, J. et al. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175, 472–487.e20 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gagnon, D. & Parent, M. Distribution of VGLUT3 in highly collateralized axons from the rat dorsal raphe nucleus as revealed by single-neuron reconstructions. PLoS ONE 9, e87709 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, J. et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. eLife 8, e49424 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, J. W. et al. Mice with reduced DAT levels recreate seasonal-induced switching between states in bipolar disorder. Neuropsychopharmacology 43, 1721–1731 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanz, E. et al. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc. Natl Acad. Sci. USA 106, 13939–13944 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hobson, B. D. et al. Subcellular and regional localization of mRNA translation in midbrain dopamine neurons. Cell Rep. 38, 110208 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senft, R. A., Freret, M. E., Sturrock, N. & Dymecki, S. M. Neurochemically and hodologically distinct ascending VGLUT3 versus serotonin subsystems comprise the r2-Pet1 median raphe. J. Neurosci. 41, 2581–2600 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinlechner, S. et al. Robust circadian rhythmicity of Per1 and Per2 mutant mice in constant light, and dynamics of Per1 and Per2 gene expression under long and short photoperiods. J. Biol. Rhythms 17, https://doi.org/10.1177/074873040201700303 (2002).

  • Ikeno, T. & Yan, L. Chronic light exposure in the middle of the night disturbs the circadian system and emotional regulation. J. Biol. Rhythms 31, 352–364 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duy, P. Q. et al. Light has diverse spatiotemporal molecular changes in the mouse suprachiasmatic nucleus. J. Biol. Rhythms 35, 576–587 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hafner, G. et al. Mapping brain-wide afferent inputs of parvalbumin-expressing GABAergic neurons in barrel cortex reveals local and long-range circuit motifs. Cell Rep. 28, 3450–3461.e8 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z., Beier, C., Weil, T. & Hattar, S. The retinal ipRGC-preoptic circuit mediates the acute effect of light on sleep. Nat. Commun. 12, 5115 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scammell, T. E., Arrigoni, E. & Lipton, J. O. Neural circuitry of wakefulness and sleep. Neuron 93, 747–765 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, H., Cui, Y. & Yang, Y. Circuits and functions of the lateral habenula in health and in disease. Nat. Rev. Neurosci. 21, 277–295 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beier, C., Zhang, Z., Yurgel, M. & Hattar, S. Projections of ipRGCs and conventional RGCs to retinorecipient brain nuclei. J. Comp. Neurol. 529, 1863–1875 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Merchán-Pérez, A., Rodriguez, J.-R., Ribak, C. E. & DeFelipe, J. Proximity of excitatory and inhibitory axon terminals adjacent to pyramidal cell bodies provides a putative basis for nonsynaptic interactions. Proc. Natl Acad. Sci. USA 106, 9878–9883 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. C. et al. Linking genetically defined neurons to behavior through a broadly applicable silencing allele. Neuron 63, 305–315 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Voisin, A. N. et al. Axonal segregation and role of the vesicular glutamate transporter VGLUT3 in serotonin neurons. Front. Neuroanat. 10, 39 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortin, G. M. et al. Segregation of dopamine and glutamate release sites in dopamine neuron axons: regulation by striatal target cells. FASEB J. 33, 400–417 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vega, A. et al. Neurotrophin-dependent plasticity of neurotransmitter segregation in the rat superior cervical ganglion in vivo: neurotrophin and plasticity segregation. Dev. Neurobiol. 76, 832–846 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yasumoto, Y., Nakao, R. & Oishi, K. Free access to a running-wheel advances the phase of behavioral and physiological circadian rhythms and peripheral molecular clocks in mice. PLoS ONE 10, e0116476 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pollak Dorocic, I. et al. A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 83, 663–678 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogawa, S. K., Cohen, J. Y., Hwang, D., Uchida, N. & Watabe-Uchida, M. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep. 8, 1105–1118 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimmel, R. A. et al. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev. 14, 1377–1389 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Divito, C. B. et al. Loss of VGLUT3 produces circadian-dependent hyperdopaminergia and ameliorates motor dysfunction and l-dopa-mediated dyskinesias in a model of parkinson’s disease. J. Neurosci. 35, 14983–14999 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, M. M. et al. A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc. Natl Acad. Sci. USA 102, 16472–16477 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brust, R. D., Corcoran, A. E., Richerson, G. B., Nattie, E. & Dymecki, S. M. Functional and developmental identification of a molecular subtype of brain serotonergic neuron specialized to regulate breathing Dynamics. Cell Rep. 9, 2152–2165 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niederkofler, V. et al. Identification of serotonergic neuronal modules that affect aggressive behavior. Cell Rep. 17, 1934–1949 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paxinos, G. and Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates (Elsevier/Academic Press, 2008).

  • Allen Institute for Brain Science. Allen Mouse Brain Atlas [Adult, Coronal]. https://mouse.brain-map.org (2011).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *