• Tesla, N. Valvular conduit. US patent 1,329,559 (1920).

  • de Vries, S. F., Florea, D., Homburg, F. & Frijns, A. Design and operation of a Tesla-type valve for pulsating heat pipes. Int. J. Heat Mass Transf. 105, 1–11 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Jin, Z.-j, Gao, Z.-x, Chen, M.-r & Qian, J.-y Parametric study on Tesla valve with reverse flow for hydrogen decompression. Int. J. Hydrogen Energy 43, 8888–8896 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Porwal, P. R., Thompson, S. M., Walters, D. K. & Jamal, T. Heat transfer and fluid flow characteristics in multistaged Tesla valves. Numer. Heat Transf. A Appl. 73, 347–365 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nguyen, Q. M., Abouezzi, J. & Ristroph, L. Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve. Nat. Commun. 12, 2884 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Purwidyantri, A. & Prabowo, B. A. Tesla valve microfluidics: the rise of forgotten technology. Chemosensors 11, 256 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S., Broido, D., Esfarjani, K. & Chen, G. Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huberman, S. et al. Observation of second sound in graphite at temperatures above 100 K. Science 364, 375–379 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jeong, J., Li, X., Lee, S., Shi, L. & Wang, Y. Transient hydrodynamic lattice cooling by picosecond laser irradiation of graphite. Phys. Rev. Lett. 127, 085901 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, X. et al. Observation of phonon Poiseuille flow in isotopically purified graphite ribbons. Nat. Commun. 14, 2044 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sulpizio, J. A. et al. Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576, 75–79 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ku, M. J. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cepellotti, A. et al. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, Y. & Wang, M. Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 595, 1–44 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Beardo, A. et al. Observation of second sound in a rapidly varying temperature field in Ge. Sci. Adv. 7, eabg4677 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ding, Z. et al. Observation of second sound in graphite over 200 K. Nat. Commun. 13, 285 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Machida, Y. et al. Observation of Poiseuille flow of phonons in black phosphorus. Sci. Adv. 4, eaat3374 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Martelli, V., Jiménez, J. L., Continentino, M., Baggio-Saitovitch, E. & Behnia, K. Thermal transport and phonon hydrodynamics in strontium titanate. Phys. Rev. Lett. 120, 125901 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shang, M.-Y., Zhang, C., Guo, Z. & Lü, J.-T. Heat vortex in hydrodynamic phonon transport of two-dimensional materials. Sci. Rep. 10, 8272 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, Y., Zhang, Z., Nomura, M., Volz, S. & Wang, M. Phonon vortex dynamics in graphene ribbon by solving Boltzmann transport equation with ab initio scattering rates. Int. J. Heat Mass Transf. 169, 120981 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, C., Chen, S. & Guo, Z. Heat vortices of ballistic and hydrodynamic phonon transport in two-dimensional materials. Int. J. Heat Mass Transf. 176, 121282 (2021).

    Article 

    Google Scholar
     

  • Guo, Y. & Wang, M. Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway’s dual relaxation model. Phys. Rev. B 96, 134312 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ding, Z. et al. Phonon hydrodynamic heat conduction and Knudsen minimum in graphite. Nano Lett. 18, 638–649 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Li, X. & Lee, S. Crossover of ballistic, hydrodynamic, and diffusive phonon transport in suspended graphene. Phys. Rev. B 99, 085202 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, Y. et al. Size effect on phonon hydrodynamics in graphite microstructures and nanostructures. Phys. Rev. B 104, 075450 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, G. Non-Fourier phonon heat conduction at the microscale and nanoscale. Nat. Rev. Phys. 3, 555–569 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liao, B. (ed.) Nanoscale Energy Transport 2053–2563 (IOP, 2020).

  • Ghosh, K., Kusiak, A. & Battaglia, J.-L. Phonon hydrodynamics in crystalline materials. J. Phys. Condens. Matter 34, 323001 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, B., Wang, L. & Casati, G. Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martínez-Pérez, M. J., Fornieri, A. & Giazotto, F. Rectification of electronic heat current by a hybrid thermal diode. Nat. Nanotechnol. 10, 303–307 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Shrestha, R. et al. Dual-mode solid-state thermal rectification. Nat. Commun. 11, 4346 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Simultaneous electrical and thermal rectification in a monolayer lateral heterojunction. Science 378, 169–175 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Malik, F. K. & Fobelets, K. A review of thermal rectification in solid-state devices. J. Semicond. 43, 103101 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Experimental study of thermal rectification in suspended monolayer graphene. Nat. Commun. 8, 15843 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kasprzak, M. et al. High-temperature silicon thermal diode and switch. Nano Energy 78, 105261 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Desmarchelier, P., Tanguy, A. & Termentzidis, K. Thermal rectification in asymmetric two-phase nanowires. Phys. Rev. B 103, 014202 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wirtz, L. & Rubio, A. The phonon dispersion of graphite revisited. Solid State Commun. 131, 141–152 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lindsay, L., Broido, D. & Mingo, N. Flexural phonons and thermal transport in multilayer graphene and graphite. Phys. Rev. B 83, 235428 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Schelling, P. & Keblinski, P. Thermal expansion of carbon structures. Phys. Rev. B 68, 035425 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Lee, S., Li, X. & Guo, R. Thermal resistance by transition between collective and non-collective phonon flows in graphitic materials. Nanoscale Microscale Thermophys. Eng. 23, 247–258 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, X., Guo, Y., Volz, S. & Nomura, M. Mapping phonon hydrodynamic strength in micrometer-scale graphite structures. Appl. Phys. Express 15, 105001 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, X. et al. Coherent and incoherent impacts of nanopillars on the thermal conductivity in silicon nanomembranes. ACS Appl. Mater. Interfaces 12, 25478–25483 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Anufriev, R. & Nomura, M. Ray phononics: thermal guides, emitters, filters, and shields powered by ballistic phonon transport. Mater. Today Phys. 15, 100272 (2020).

    Article 

    Google Scholar
     

  • FreePATHS – free phonon and thermal simulator. GitHub https://github.com/anufrievroman/freepaths (2024).

  • Ravichandran, N. K. & Broido, D. Phonon-phonon interactions in strongly bonded solids: selection rules and higher-order processes. Phys. Rev. X 10, 021063 (2020).

    CAS 

    Google Scholar
     

  • Klarbring, J., Hellman, O., Abrikosov, I. A. & Simak, S. I. Anharmonicity and ultralow thermal conductivity in lead-free halide double perovskites. Phys. Rev. Lett. 125, 045701 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guyer, R. & Krumhansl, J. Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778 (1966).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, W. Strategies for engineering phonon transport in thermoelectrics. J. Mater. Chem. C 3, 10336–10348 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Maznev, A., Every, A. & Wright, O. Reciprocity in reflection and transmission: what is a ‘phonon diode’? Wave Motion 50, 776–784 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Geurs, J. et al. Rectification by hydrodynamic flow in an encapsulated graphene Tesla valve. Preprint at https://arxiv.org/abs/2008.04862 (2020).

  • Hu, J., Ruan, X. & Chen, Y. P. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett. 9, 2730–2735 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taniguchi, T. & Yamaoka, S. Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure. J. Cryst. Growth 222, 549–557 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. Growth 303, 525–529 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pope, A., Zawilski, B. & Tritt, T. Description of removable sample mount apparatus for rapid thermal conductivity measurements. Cryogenics 41, 725–731 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maire, J. Thermal Phonon Transport in Silicon Nanosturctures. PhD thesis, Univ. Tokyo (2015).

  • Nihira, T. & Iwata, T. Temperature dependence of lattice vibrations and analysis of the specific heat of graphite. Phys. Rev. B 68, 134305 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Ho, C. Y., Powell, R. W. & Liley, P. E. Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1, 279–421 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, X. et al. Super-ballistic width dependence of thermal conductivity in graphite nanoribbons and microribbons. Nanomaterials 13, 1854 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Monteverde, U. et al. Under pressure: control of strain, phonons and bandgap opening in rippled graphene. Carbon 91, 266–274 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Alofi, A. & Srivastava, G. Thermal conductivity of graphene and graphite. Phys. Rev. B 87, 115421 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Cai, W. et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10, 1645–1651 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aliane, A. et al. Mechanical modeling and characterization of suspended cooled silicon bolometers for sub-millimeter and millimeter waves polarization detection. Sens. Actuators A Phys. 296, 254–264 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, M. C. et al. Mechanical instability driven self-assembly and architecturing of 2D materials. 2D Mater. 4, 022002 (2017).

    Article 

    Google Scholar
     

  • Asheghi, M., Touzelbaev, M. N., Goodson, K. E., Leung, Y. K. & Wong, S. S. Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates. J. Heat Transf. 120, 30–36 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Tang, J. et al. Holey silicon as an efficient thermoelectric material. Nano Lett. 10, 4279–4283 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *