• Plavchan, P. et al. A planet within the debris disk around the pre-main-sequence star AU Microscopii. Nature 582, 497–500 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bohn, A. J. et al. Probing inner and outer disk misalignments in transition disks. Constraints from VLTI/GRAVITY and ALMA observations. Astron. Astrophys. 658, A183 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Espaillat, C. et al. The transitional disk around IRAS 04125+2902. Astrophys. J. 807, 156 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Krolikowski, D. M. et al. Gaia EDR3 reveals the substructure and complicated star formation history of the greater Taurus–Auriga star-forming complex. Astron. J. 162, 110 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bressan, A. et al. PARSEC: stellar tracks and isochrones with the Padova and Trieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kraus, A. L. et al. Three wide planetary-mass companions to FW Tau, ROXs 12, and ROXs 42B. Astrophys. J. 781, 20 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Fontanive, C. et al. A wide planetary-mass companion to a young low-mass brown dwarf in Ophiuchus. Astrophys. J. 905, L14 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Johns-Krull, C. M. et al. A candidate young massive planet in orbit around the classical T Tauri star CI Tau. Astrophys. J. 826, 206 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Donati, J. F. et al. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star. Nature 534, 662–666 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Donati, J. F. et al. The magnetic field and accretion regime of CI Tau. Mon. Not. R. Astron. Soc. 491, 5660–5670 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Damasso, M. et al. The GAPS programme at TNG. XXVII. Reassessment of a young plan- etary system with HARPS-N: is the hot Jupiter V830 Tau b really there? Astron. Astrophys. 642, A133 (2020).

    Article 

    Google Scholar
     

  • Fortney, J. J. et al. Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys. J. 659, 1661–1672 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Spiegel, D. S. & Burrows, A. Spectral and photometric diagnostics of giant planet formation scenarios. Astrophys. J. 745, 174 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Vach, S. et al. The occurrence of small, short-period planets younger than 200 Myr with TESS. Astron. J. 167, 210 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mamajek, E. E. et al. Planetary construction zones in occultation: discovery of an extrasolar ring system transiting a young Sun-like star and future prospects for detecting eclipses by circumsecondary and circumplanetary disks. Astron. J. 143, 72 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Espaillat, C. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 497–520 (Univ. Arizona Press, 2014).

  • Zhu, Z. et al. Transitional and pre- transitional disks: gap opening by multiple planets? Astrophys. J. 729, 47 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Haffert, S. Y. et al. Two accreting protoplanets around the young star PDS 70. Nat. Astron. 3, 749–754 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ruíz-Rodríguez, D. et al. The frequency of binary star interlopers amongst transitional discs. Mon. Not. R. Astron. Soc. 463, 3829–3847 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Newton, E. R. et al. TESS Hunt for Young and Maturing Exoplanets (THYME): a planet in the 45 Myr Tucana–Horologium association. Astrophys. J. 880, L17 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bate, M. R. et al. Observational implications of precessing protostellar discs and jets. Mon. Not. R. Astron. Soc. 317, 773–781 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Christian, S. et al. A possible alignment between the orbits of planetary systems and their visual binary companions. Astron. J. 163, 207 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bate, M. R. et al. On the diversity and statistical properties of protostellar discs. Mon. Not. R. Astron. Soc. 475, 5618–5658 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kuffmeier, M., Dullemond, C. P., Reissl, S. & Goicovic, F. G. Misaligned disks induced by infall. Astron. Astrophys. 656, A161 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Casassus, S. et al. An inner warp in the DoAr 44 T Tauri transition disc. Mon. Not. R. Astron. Soc. 477, 5104–5114 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kraus, S. et al. A triple-star system with a misaligned and warped circumstellar disk shaped by disk tearing. Science 369, 1233–1238 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies, C. L. Star-disc (mis-)alignment in Rho Oph and Upper Sco: insights from spatially resolved disc systems with K2 rotation period. Mon. Not. R. Astron. Soc. 484, 1926–1935 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Benisty, M. et al. Shadows and asymmetries in the T Tauri disk HD 143006: evidence for a misaligned inner disk. Astron. Astrophys. 619, A171 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jenkins, J. M. et al. The TESS science processing operations center. Proc. SPIE 9913, 99133E (2016).

  • Twicken, J. D. et al. Photometric analysis in the Kepler Science Operations Center pipeline. Proc. SPIE 7740, 774023 (2010).

  • Vanderburg, A. et al. TESS spots a compact system of super-Earths around the naked-eye star HR 858. Astrophys. J. 881, L19 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stumpe, M. C. et al. Kepler presearch data conditioning I—architecture and algorithms for error correction in Kepler light curves. Publ. Astron. Soc. Pac. 124, 985–999 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Smith, J. C. et al. Kepler presearch data conditioning II—a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pac. 124, 1000 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Rizzuto, A. C. et al. Zodiacal Exoplanets in Time (ZEIT). V. A uniform search for transiting planets in young clusters observed by K2. Astron. J. 154, 224 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Astropy Collaboration et al.The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hattori, S. et al. The unpopular package: a data-driven approach to detrending TESS full-frame image light curves. Astron. J. 163, 284 (2022).

  • Uyama, T. et al. The SEEDS high-contrast imaging survey of exoplanets around young stellar objects. Astron. J. 153, 106 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wallace, A. L. et al. High-resolution survey for planetary companions to young stars in the Taurus molecular cloud. Mon. Not. R. Astron. Soc. 498, 1382–1396 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kraus, A. L. et al. The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. Astron. J. 152, 8 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Brown, T. M. et al. Las Cumbres Observatory Global Telescope Network. Publ. Astron. Soc. Pac. 125, 1031 (2013).

    Article 
    ADS 

    Google Scholar
     

  • McCully, C. et al. Real-time processing of the imaging data from the network of Las Cumbres Observatory Telescopes using BANZAI. Proc. SPIE 10707, 107070K (2018).

  • Collins, K. A. et al. AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153, 77 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Park, C. et al. Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer). Proc. SPIE 9147, 91471D (2014).

  • López-Valdivia, R. et al. The IGRINS YSO survey. I. Stellar parameters of pre-main-sequence stars in Taurus–Auriga. Astrophys. J. 921, 53 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lee, J.-J., Gullikson, K. & Kaplan, K. igrins/plp 2.2.0. Zenodo https://doi.org/10.5281/zenodo.11080095 (2017).

  • Stahl, A. G. et al. IGRINS RV: a precision radial velocity pipeline for IGRINS using modified forward modeling in the near-infrared. Astron. J. 161, 283 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Abdurro’uf. et al. The seventeenth data release of the Sloan Digital Sky Surveys: complete release of MaNGA, MaStar, and APOGEE-2 data. Astrophys. J. Suppl. Ser. 259, 35 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mahadevan, S. et al. The Habitable Zone Planet Finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass exoplanets around M dwarfs. Proc. SPIE 7735, 77356X (2010).

  • Mahadevan, S. et al. The Habitable-zone Planet Finder: a status update on the development of a stabilized fiber-fed near-infrared spectrograph for the for the Hobby-Eberly telescope. Proc. SPIE 9147, 91471G (2014).

  • Kanodia, S. et al. Overview of the spectrometer optical fiber feed for the Habitable-zone Planet Finder. Proc. SPIE 10702, 107026Q (2018).

  • Stefansson, G. et al. A versatile technique to enable sub-milli-kelvin instrument stability for precise radial velocity measurements: tests with the Habitable-zone Planet Finder. Astrophys. J. 833, 175 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Metcalf, A. J. et al. Stellar spectroscopy in the near-infrared with a laser frequency comb. Optica 6, 233 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ninan, J. P. et al. The Habitable-zone Planet Finder: improved flux image generation algorithms for H2RG up-the-ramp dat. Proc. SPIE 10709, 107092U (2018).

  • Kaplan, K. F. et al. The algorithms behind the HPF and NEID pipeline. In Astronomical Data Analysis Software and Systems XXVII: Astronomical Society of the Pacific Conference Series Vol. 523 (eds Teuben, P. J. et al.) 567–570 (Univ. Maryland, 2019).

  • Wright, J. T. & Eastman, J. D. Barycentric corrections at 1 cm s−1 for precise Doppler velocities. Publ. Astron. Soc. Pac. 126, 838–852 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Rucinski, S. M. et al. Radial velocity studies of close binary stars. VII. Methods and uncertainties. Publ. Astron. Soc. Pac. 124, 1746–1756 (2002).


    Google Scholar
     

  • Tofflemire, B. M., Mathieu, R. D. & Johns-Krull, C. M. Accretion kinematics in the T Tauri binary TWA 3A: evidence for preferential accretion onto the TWA 3A primary. Astron. J. 158, 245 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tofflemire, B. M. offlemire/saphires: Zenodo archive (2019).

  • Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).

    Article 

    Google Scholar
     

  • Spina, L. et al. The Gaia–ESO aurvey: the present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters. Astron. Astrophys. 601, A70 (2017).

    Article 

    Google Scholar
     

  • D’Orazi, V., Biazzo, K. & Randich, S. Chemical composition of the Taurus–Auriga association. Astron. Astrophys. 526, A103 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Herczeg, G. J. & Hillenbrand, L. A. An optical spectroscopic study of T Tauri stars. I. Photospheric properties. Astrophys. J. 786, 97 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Mann, A. W. et al. Zodiacal Exoplanets in Time (ZEIT). III. A short-period planet orbiting a pre-main-sequence star in the Upper Scorpius OB association. Astron. J. 152, 61 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Mann, A. W. et al. TESS Hunt for Young and Maturing Exoplanets (THYME). VI. An 11 Myr giant planet transiting a very-low-mass star in lower Centaurus Crux. Astron. J. 163, 156 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rayner, J. T., Cushing, M. C. & Vacca, W. D. The Infrared Telescope Facility (IRTF) spectral library: cool stars. Astrophys. J. Suppl. Ser. 185, 289–432 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mann, A. W. et al. How to constrain your M dwarf: measuring effective temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Gaidos, E. et al. Trumpeting M dwarfs with CONCH-SHELL: a catalogue of nearby cool host-stars for habitable exoplanets and life. Mon. Not. R. Astron. Soc. 443, 2561–2578 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lantz, B. et al. SNIFS: a wideband integral field spectrograph with microlens arrays. Proc. SPIE 5249, 146–155 (2004).

  • Allard, F. et al. Progress in modeling very low mass stars, brown dwarfs, and planetary mass objects. Mem. Soc. Astron. Ital. Suppl. 24, 128 (2013).

    ADS 

    Google Scholar
     

  • Gully-Santiago, M. A. et al. Placing the spotted T Tauri star LkCa 4 on an HR diagram. Astrophys. J. 836, 200 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Thao, P. C. et al. Hazy with a chance of star spots: constraining the atmosphere of young planet K2-33b. Astron. J. 577, A42 (2015).

    ADS 

    Google Scholar
     

  • Koen, C. The seventeenth data release of the Sloan Digital Sky Surveys: complete release of MaNGA, MaStar, and APOGEE-2 data. Mon. Not. R. Astron. Soc. 463, 4383–4395 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Frasca, A. et al. REM near-IR and optical photometric monitoring of pre-main sequence stars in Orion. Rotation periods and starspot parameters. Astron. Astrophys. 508, 1313–1330 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Thao, P. C. et al. Zodiacal Exoplanets in Time (ZEIT). IX. A flat transmission spectrum and a highly eccentric orbit for the young Neptune K2-25b as revealed by Spitzer. Astron. J. 159, 2 (2020).

    Article 

    Google Scholar
     

  • Baraffe, I., Homeier, D., Allard, F. & Chabrier, G. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron. Astrophys. 577, A42 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. The MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hartmann, L., Herczeg, G. & Calvet, N. Accretion onto pre-main-sequence stars. Annu. Rev. Astron. Astrophys. 54, 135–180 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alcalá, J. M. et al. X-shooter spectroscopy of young stellar objects in Lupus. Accretion properties of class II and transitional objects. Astron. Astrophys. 600, A20 (2017).

    Article 

    Google Scholar
     

  • Luhman, K. L. The stellar population of the Chamaeleon I star-forming region. Astrophys. J. Suppl. Ser. 173, 104–136 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kesseli, A. Y., Muirhead, P. S., Mann, A. W. & Mace, G. et al. Magnetic inflation and stellar mass. II. On the radii of single, rapidly rotating, fully convective M-dwarf stars. Astron. J. 155, 225 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lavail, A., Kochukhov, O. & Hussain, G. A. J. Characterising the surface magnetic fields of T Tauri stars with high-resolution near-infrared spectroscopy. Astron. Astrophys. 630, A99 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Masuda, K. & Winn, J. N. On the inference of a star’s inclination angle from its rotation velocity and projected rotation velocity. Astron. J. 159, 81 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Tofflemire, B. M. et al. TESS Hunt for Young and Maturing Exoplanets (THYME). V. A sub-Neptune transiting a young star in a newly discovered 250 Myr association. Astron. J. 161, 171 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. 190, 1–42 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Lubow, S. H. & Ogilvie, G. I. On the tilting of protostellar disks by resonant tidal effects. Astrophys. J. 538, 326–340 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Pearce, L. A. et al. Orbital parameter determination for wide stellar binary systems in the age of Gaia. Astrophys. J. 894, 115 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blunt, S. et al. Orbits for the impatient: a Bayesian rejection-sampling method for quickly fitting the orbits of long-period exoplanets. Astron. J. 153, 229 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ferrer-Chávez, R., Wang, J. J. & Blunt, S. Biases in orbital fitting of directly imaged exoplanets with small orbital coverage. Astron. J. 161, 241 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hildebrand, R. H. The determination of cloud masses and dust characteristics from submillimetre thermal emission. Q. J. R. Astron. Soc. 24, 267–282 (1983).

    ADS 

    Google Scholar
     

  • Ansdell, M. et al. ALMA survey of Lupus protoplanetary disks. I. Dust and gas masses. Astrophys. J. 828, 46 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Guesten, R. A survey for circumstellar disks around young stellar objects. Astron. J. 99, 924 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Testi, L. et al. The protoplanetary disk population in the ρ-Ophiuchi region L1688 and the time evolution of class II YSOs. Astron. Astrophys. 663, A98 (2022).

    Article 

    Google Scholar
     

  • Mann, A. W. et al. Zodiacal Exoplanets in Time (ZEIT). I. A Neptune-sized planet orbiting an M4.5 dwarf in the Hyades star cluster. Astrophys. J. 818, 46 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Johnson, M. C. et al. K2-260 b: a hot Jupiter transiting an F star, and K2-261 b: a warm Saturn around a bright G star. Mon. Not. R. Astron. Soc. 481, 596–612 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kreidberg, L. BATMAN: basic transit model calculation in Python. Publ. Astron. Soc. Pac. 127, 1161–1165 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Foreman-Mackey, D. et al. Fast and scalable Gaussian process modeling with applications to astronomical time series. Astron. J. 154, 220 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wittrock, J. M. et al. Transit timing variations for AU Microscopii b & c. Astron. J. 164, 27 (2022).

  • Van Eylen, V. & Albrecht, S. Eccentricity from transit photometry: small planets in Kepler multi-planet systems have low eccentricities. Astrophys. J. 808, 126 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Parviainen, H. & Aigrain, S. LDTK: Limb Darkening Toolkit. Mon. Not. R. Astron. Soc. 453, 3821–3826 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Rogers, J. G., Janó Muñoz, C., Owen, J. E. & Makinen, T. L. Exoplanet atmosphere evolution: emulation with neural networks. Mon. Not. R. Astron. Soc. 519, 6028–6043 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marley, M. S. et al. The Sonora brown dwarf atmosphere and evolution models. I. Model description and application to cloudless atmospheres in rainout chemical equilibrium. Astrophys. J. 920, 85 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wood, M. L., Mann, A. W. & Kraus, A. L. Characterizing undetected stellar companions with combined datasets. Astron. J. 162, 128 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ansdell, M. et al. Young “dipper” stars in Upper Sco and Oph observed by K2. Astrophys. J. 816, 69 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Van Eyken, J. C. et al. The PTF Orion Project: a possible planet transiting a T-Tauri star. Astrophys. J. 755, 42 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bouma, L. G. et al. PTFO 8-8695: two stars, two signals, no planet. Astron. J. 160, 86 (2020).

  • Stauffer, J. et al. Orbiting clouds of material at the Keplerian co-rotation radius of rapidly rotating low-mass WTTs in Upper Sco. Astron. J. 153, 152 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Koen, C. Multicolour time series photometry of the T Tauri star CVSO 30. Mon. Not. R. Astron. Soc. 450, 3991–3998 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ciardi, D. R. et al. Follow-up observations of PTFO 8-8695: a 3 Myr old T-Tauri star hosting a Jupiter-mass planetary candidate. Astrophys. J. 809, 42 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Yu, L. et al. Tests of the planetary hypothesis for PTFO 8-8695b. Astrophys. J. 812, 48 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Dattilo, A., Batalha, N. M. & Bryson, S. A. A unified treatment of kepler occurrence to trace planet evolution. I. Methodology. Astron. J. 166, 122 (2023).

    Article 
    ADS 

    Google Scholar
     

  • ExoFOP. Exoplanet follow-up observing program – kepler (2019).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *