Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Proc. Mag. 19, 17–28 (2002).
Li, S. et al. Deep learning for hyperspectral image classification: an overview. IEEE Trans. Geosci. Remote 57, 6690–6709 (2019).
Backman, V. et al. Detection of preinvasive cancer cells. Nature 406, 35–36 (2000).
Hadoux, X. et al. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat. Commun. 10, 4227 (2019).
Mehl, P. M., Chen, Y.-R., Kim, M. S. & Chan, D. E. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. J. Food Eng. 61, 67–81 (2004).
Yang, Z. et al. Single-nanowire spectrometers. Science 365, 1017–1020 (2019).
Green, R. O. et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65, 227–248 (1998).
Pian, Q., Yao, R., Sinsuebphon, N. & Intes, X. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging. Nat. Photonics 11, 411–414 (2017).
Descour, M. & Dereniak, E. Computed-tomography imaging spectrometer: experimental calibration and reconstruction results. Appl. Opt. 34, 4817–4826 (1995).
Wagadarikar, A., John, R., Willett, R. & Brady, D. Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47, 44–51 (2008).
Arguello, H. & Arce, G. R. Colored coded aperture design by concentration of measure in compressive spectral imaging. IEEE Trans. Image Process. 23, 1896–1908 (2014).
Geelen, B., Tack, N. & Lambrechts, A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic. In Advanced Fabrication Technologies for Micro/nano Optics and Photonics VII, Vol. 8974, pp. 80–87 (SPIE, 2014).
Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photon. 13, 390–396 (2019).
Faraji-Dana, M. et al. Hyperspectral imager with folded metasurface optics. ACS Photon. 6, 2161–2167 (2019).
Xiong, J. et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces. Optica 9, 461–468 (2022).
He, H. et al. Meta-attention network based spectral reconstruction with snapshot near-infrared metasurface. Adv. Mater. 2313357 (2024).
Wang, Z. et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat. Commun. 10, 1020 (2019).
Yako, M. et al. Video-rate hyperspectral camera based on a CMOS-compatible random array of Fabry–Pérot filters. Nat. Photon. 17, 218–223 (2023).
Kim, T., Lee, K. C., Baek, N., Chae, H. & Lee, S. A. Aperture-encoded snapshot hyperspectral imaging with a lensless camera. APL Photon. 8, 066109 (2023).
Redding, B., Liew, S. F., Sarma, R. & Cao, H. Compact spectrometer based on a disordered photonic chip. Nat. Photon. 7, 746–751 (2013).
Monakhova, K., Yanny, K., Aggarwal, N. & Waller, L. Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array. Optica 7, 1298–1307 (2020).
Jeon, D. S. et al. Compact snapshot hyperspectral imaging with diffracted rotation. ACM Trans. Graph. 38, 117 (2019).
Cortés, V., Blasco, J., Aleixos, N., Cubero, S. & Talens, P. Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: a review. Trends Food Sci. Technol. 85, 138–148 (2019).
Limantara, L. et al. Analysis on the chlorophyll content of commercial green leafy vegetables. Procedia Chem. 14, 225–231 (2015).
Li, L. et al. Calibration transfer between developed portable Vis/NIR devices for detection of soluble solids contents in apple. Postharvest Biol. Technol. 183, 111720 (2022).
Ma, T., Xia, Y., Inagaki, T. & Tsuchikawa, S. Rapid and nondestructive evaluation of soluble solids content (SSC) and firmness in apple using Vis–NIR spatially resolved spectroscopy. Postharvest Biol.Technol. 173, 111417 (2021).
Liu, Z., Li, W. & Wei, Z. Qualitative classification of waste textiles based on near infrared spectroscopy and the convolutional network. Text. Res. J. 90, 1057–1066 (2020).
Kim, S. et al. All-water-based electron-beam lithography using silk as a resist. Nat. Nanotechnol. 9, 306–310 (2014).
Yu, S., Wu, X., Wang, Y., Guo, X. & Tong, L. 2D materials for optical modulation: challenges and opportunities. Adv. Mater. 29, 1606128 (2017).
Zheng, Y., Sato, I. & Sato, Y. Illumination and reflectance spectra separation of a hyperspectral image meets low-rank matrix factorization. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1779–1787 (IEEE, 2015).
Abdar, M. et al. A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021).
Wu, J. et al. An integrated imaging sensor for aberration-corrected 3D photography. Nature 612, 62–71 (2022).
Gao, L., Liang, J., Li, C. & Wang, L. V. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature 516, 74–77 (2014).
Altaqui, A. et al. Mantis shrimp–inspired organic photodetector for simultaneous hyperspectral and polarimetric imaging. Sci. Adv. 7, 3196 (2021).
Shi, W. et al. Pre-processing visualization of hyperspectral fluorescent data with spectrally encoded enhanced representations. Nat. Commun. 11, 726 (2020).
Wu, J. et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell 184, 3318–3332 (2021).
Wang, Z. et al. Uformer: a general u-shaped transformer for image restoration. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 17683–17693 (IEEE, 2022).
Zamir, S.W. et al. Restormer: efficient transformer for high-resolution image restoration. In Proc. IEEE Conferemce on Computer Vision and Pattern Recognition, pp. 5728–5739 (IEEE, 2022).
Gehm, M. E., John, R., Brady, D. J., Willett, R. M. & Schulz, T. J. Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15, 14013–14027 (2007).
Cao, X., Du, H., Tong, X., Dai, Q. & Lin, S. A prism-mask system for multispectral video acquisition. IEEE Trans. Pattern Anal. 33, 2423–2435 (2011).
Kim, M. H. et al. 3D imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Trans. Graph. 31, 38 (2012).
Lin, X., Liu, Y., Wu, J. & Dai, Q. Spatial-spectral encoded compressive hyperspectral imaging. ACM Trans. Graph. 33, 233 (2014).
Ma, C., Cao, X., Tong, X., Dai, Q. & Lin, S. Acquisition of high spatial and spectral resolution video with a hybrid camera system. Int. J Comput. Vision 110, 141–155 (2014).
Lin, X., Wetzstein, G., Liu, Y. & Dai, Q. Dual-coded compressive hyperspectral imaging. Opt. Lett. 39, 2044–2047 (2014).
Golub, M. A. et al. Compressed sensing snapshot spectral imaging by a regular digital camera with an added optical diffuser. Appl. Opt. 55, 432–443 (2016).
Wang, P. & Menon, R. Computational multispectral video imaging. J. Opt. Soc. Am. 35, 189–199 (2018).
Mu, T., Han, F., Bao, D., Zhang, C. & Liang, R. Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter. Opt. Lett. 44, 1281–1284 (2019).
McClung, A., Samudrala, S., Torfeh, M., Mansouree, M. & Arbabi, A. Snapshot spectral imaging with parallel metasystems. Sci. Adv. 6, eabc7646 (2020).
Williams, C., Gordon, G. S., Wilkinson, T. D. & Bohndiek, S. E. Grayscale-to-color: scalable fabrication of custom multispectral filter arrays. ACS Photon. 6, 3132–3141 (2019).
Zhang, W. et al. Handheld snapshot multi-spectral camera at tens-of-megapixel resolution. Nat. Commun. 14, 5043 (2023).
Yuan, L., Song, Q., Liu, H., Heggarty, K. & Cai, W. Super-resolution computed tomography imaging spectrometry. Photonics Res. 11, 212–224 (2023).