Gelbstein, Y. et al. Physical, mechanical, and structural properties of highly efficient nanostructured n- and p-silicides for practical thermoelectric applications. J. Electron. Mater. 43, 1703–1711 (2014).
Gahlawat, S., White, K., Ren, Z., Kogo, Y. & Iida, T. in Advanced Thermoelectrics, Materials, Contacts, Devices, and Systems (eds Zhifeng, R. et al.) 555–602 (CRC Press, 2017).
Yang, Q. et al. Flexible thermoelectrics based on ductile semiconductors. Science 377, 854–858 (2022).
Hu, H., Wang, Y., Fu, C., Zhao, X. & Zhu, T. Achieving metal-like malleability and ductility in Ag2Te1−xSx inorganic thermoelectric semiconductors with high mobility. The Innovation 3, 100341 (2022).
Peter, Y. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties (Springer Science & Business Media, 2010).
Shi, X. et al. Room-temperature ductile inorganic semiconductor. Nat. Mater. 17, 421–426 (2018).
Oshima, Y., Nakamura, A. & Matsunaga, K. Extraordinary plasticity of an inorganic semiconductor in darkness. Science 360, 772–774 (2018).
Wei, T.-R. et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 369, 542–545 (2020).
Gao, Z. et al. High-throughput screening of 2D van der Waals crystals with plastic deformability. Nat. Commun. 13, 7491 (2022).
Hong, S. et al. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536 (2019).
Mao, J., Chen, G. & Ren, Z. Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021).
Shi, J., Guo, Z. & Sui, M. Slip system determination of dislocations in a-Ti during in situ TEM tensile deformation. Acta Metall. Sin. 52, 71–77 (2016).
Partridge, P. The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 12, 169–194 (1967).
Chin, G. Y. & Mammel, W. L. Competition among basal, prism, and pyramidal slip modes in hcp metals. Metall. Trans. 1, 357–361 (1970).
Yoo, M. H. Slip twinning, and fracture in hexagonal close-packed metals. Metall. Mater. Trans. 12, 409–418 (1981).
Li, G. et al. Ductile deformation mechanism in semiconductor Ag2S. npj Comput. Mater. 4, 44 (2018).
Ando, S. & Tonda, H. Non-basal slips in magnesium and magnesium-lithium alloy single crystals. Mater. Sci. Forum 350–351, 43–48 (2000).
Agnew, S., Yoo, M. & Tome, C. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 49, 4277–4289 (2001).
Chino, Y., Kado, M. & Mabuchi, M. Compressive deformation behavior at room temperature-773 K in Mg-0.2 mass% (0.035 at.%) Ce alloy. Acta Mater. 56, 387–394 (2008).
Al-Samman, T. & Li, X. Sheet texture modification in magnesium-based alloys by selective rare earth alloying. Mater. Sci. Eng. A 528, 3809–3822 (2011).
Sandlöbes, S. et al. Ductility improvement of Mg alloys by solid solution: ab initio modeling, synthesis and mechanical properties. Acta Mater. 70, 92–104 (2014).
Atomic Reference Data for Electronic Structure Calculations, Atomic Total Energies and Eigenvalues (NIST, 2015); https://www.nist.gov/pml/atomic-reference-data-electronic-structure-calculations/atomic-reference-data-electronic-7.
Schäfer, H., Eisenmann, B. & Müller, W. Zintl phases: transitions between metallic and ionic bonding. Angew. Chem. Int. Ed. 12, 694–712 (1973).
Zhang, J. et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 8, 13901 (2017).
Mao, J. et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019).
Goto, Y. et al. Band anisotropy generates axis-dependent conduction polarity of Mg3Sb2 and Mg3Bi2. Chem. Mater. 36, 2018–2026 (2024).
Loebner, E. E. Thermoelectric power of carbons and graphite. Phys. Rev. 84, 153–153 (1951).
Saunders, G. A., Miziumski, C., Cooper, G. S. & Lawson, A. The Seebeck coefficients of antimony and arsenic single crystals. J. Phys. Chem. Solids 26, 1299–1303 (1965).
Shang, H. et al. N-type Mg3Sb2−xBix with improved thermal stability for thermoelectric power generation. Acta Mater. 201, 572–579 (2020).
Li, A. et al. Chemical stability and degradation mechanism of Mg3Sb2−xBix thermoelectrics towards room-temperature applications. Acta Mater. 239, 118301 (2022).
Wu, X. et al. Revealing the chemical instability of Mg3Sb2−xBix-based thermoelectric materials. ACS Appl. Mater. Interfaces 15, 50216–50224 (2023).
Tamaki, H., Sato, H. K. & Kanno, T. Isotropic conduction network and defect chemistry in Mg3Sb2-based layered Zintl compounds with high thermoelectric performance. Adv. Mater. 28, 10182–10187 (2016).
Ohno, S. et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule 2, 141–154 (2018).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Peng, H., Yang, Z.-H., Perdew, J. P. & Sun, J. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys. Rev. X 6, 041005 (2016).
Dronskowski, R. & Blöchl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).
Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).
Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical‐bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).
Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).
Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).
Singh, D. J. Electronic structure calculations with the Tran–Blaha modified Becke–Johnson density functional. Phys. Rev. B 82, 205102 (2010).
Yates, J. R., Wang, X., Vanderbilt, D. & Souza, I. Spectral and Fermi surface properties from Wannier interpolation. Phys. Rev. B 75, 195121 (2007).
Mostofi, A. A. et al. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).
Mostofi, A. A. et al. An updated version of Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).
Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17, 176–179 (1999).
Jin, Y. et al. High-throughput deformation potential and electrical transport calculations. npj Comput. Mater. 9, 190 (2023).
Madsen, G. K., Carrete, J. & Verstraete, M. J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018).