Hogg, A. M. & Gayen, B. Ocean gyres driven by surface buoyancy forcing. Geophys. Res. Lett. 47, e2020GL088539 (2020).
Luyten, J., Pedlosky, J. & Stommel, H. Climatic inferences from the ventilated thermocline. Clim. Change 5, 183–191 (1983).
Muglia, J. & Schmittner, A. Glacial Atlantic overturning increased by wind stress in climate models. Geophys. Res. Lett. 42, 9862–9868 (2015).
Slowey, N. C. & Curry, W. B. Glacial-interglacial differences in circulation and carbon cycling within the upper western North Atlantic. Paleoceanography 10, 715–732 (1995).
Boyle, E. A. & Keigwin, L. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40 (1987).
Duplessy, J. C. et al. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3, 343–360 (1988).
Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean. Paleoceanography 20, PA1017 (2005).
Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54, 5–63 (2016).
Petit, T., Lozier, M. S., Rühs, S., Handmann, P. & Biastoch, A. Propagation and transformation of upper North Atlantic Deep Water from the subpolar gyre to 26.5°N. J. Geophys. Res. Oceans 128, e2023JC019726 (2023).
Munk, W. H. On the wind-driven ocean circulation. J. Atmos. Sci. 7, 80–93 (1950).
Rossby, T. On gyre interactions. Deep Sea Res. Part II Top. Stud. Oceanogr. 46, 139–164 (1999).
Tooth, O. J., Foukal, N. P., Johns, W. E., Johnson, H. L. & Wilson, C. Lagrangian decomposition of the Atlantic Ocean heat transport at 26.5°N. Preprint at https://doi.org/10.22541/essoar.170067209.93767492/v2 (2024).
Talley, L. D. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 1–22 (American Geophysical Union, 1999).
Foukal, N. P. & Chafik, L. The AMOC needs a universally-accepted definition. Preprint at https://doi.org/10.1002/essoar.10512765.1 (2022).
Berglund, S., Döös, K., Groeskamp, S. & McDougall, T. J. The downward spiralling nature of the North Atlantic Subtropical Gyre. Nat. Commun. 13, 2000 (2022).
Lynch-Stieglitz, J., Curry, W. B. & Slowey, N. A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic foraminifera. Paleoceanography 14, 360–373 (1999).
Matsumoto, K. & Lynch-Stieglitz, J. Persistence of Gulf Stream separation during the Last Glacial Period: implications for current separation theories. J. Geophys. Res. Oceans 108, 3174 (2003).
Gebbie, G. How much did Glacial North Atlantic water shoal? Paleoceanography 29, 190–209 (2014).
Keigwin, L. D. & Swift, S. A. Carbon isotope evidence for a northern source of deep water in the glacial western North Atlantic. Proc. Natl Acad. Sci. 114, 2831–2835 (2017).
Pöppelmeier, F., Jeltsch-Thömmes, A., Lippold, J., Joos, F. & Stocker, T. F. Multi-proxy constraints on Atlantic circulation dynamics since the last ice age. Nat. Geosci. 16, 349–356 (2023).
Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569–573 (2020).
Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).
Peltier, W. R. & Fairbanks, R. G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat. Sci. Rev. 25, 3322–3337 (2006).
Talley, L. D. & McCartney, M. S. Distribution and circulation of Labrador Sea water. J. Phys. Oceanogr. 12, 1189–1205 (1982).
Fratantoni, P. S. & Pickart, R. S. The western North Atlantic shelfbreak current system in summer. J. Phys. Oceanogr. 37, 2509–2533 (2007).
Lund, D.C., Adkins, J. F. & Ferrari, R. Abyssal Atlantic circulation during the Last Glacial Maximum: constraining the ratio between transport and vertical mixing. Paleoceanography 26, PA1213 (2011).
Keigwin, L. D. Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography 19, PA4012 (2004).
Oppo, D. W. et al. Data constraints on glacial Atlantic water mass geometry and properties. Paleoceanogr. Paleoclimatol. 33, 1013–1034 (2018).
Huang, E. et al. Response of eastern tropical Atlantic central waters to Atlantic meridional overturning circulation changes during the Last Glacial Maximum and Heinrich Stadial 1. Paleoceanography 27, PA3229 (2012).
Osman, M. B. et al. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).
Gong, X. et al. Higher Laurentide and Greenland ice sheets strengthen the North Atlantic ocean circulation. Clim. Dyn. 45, 139–150 (2015).
Feucher, C., Maze, G. & Mercier, H. Subtropical mode water and permanent pycnocline properties in the world ocean. J. Geophys. Res. Oceans 124, 1139–1154 (2019).
Evans, H. K. & Hall, I. R. Deepwater circulation on Blake Outer Ridge (western North Atlantic) during the Holocene, Younger Dryas, and Last Glacial Maximum. Geochem. Geophys. Geosyst. 9, Q03023 (2008).
Thornalley, D. J. R., Barker, S., Becker, J., Hall, I. R. & Knorr, G. Abrupt changes in deep Atlantic circulation during the transition to full glacial conditions. Paleoceanography 28, 253–262 (2013).
Drouin, K. L., Lozier, M. S., Beron-Vera, F. J., Miron, P. & Olascoaga, M. J. Surface pathways connecting the South and North Atlantic oceans. Geophys. Res. Lett. 49, e2021GL096646 (2022).
Ionita, D. A., Di Lorenzo, E. & Lynch-Stieglitz, J. Effect of lower sea level on geostrophic transport through the Florida Straits during the Last Glacial Maximum. Paleoceanography 24, PA4210 (2009).
Marchitto, T. M. & Broecker, W. S. Deep water mass geometry in the glacial Atlantic Ocean: a review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst. 7, Q12003 (2006).
Gary, S. F., Lozier, M. S., Biastoch, A. & Böning, C. W. Reconciling tracer and float observations of the export pathways of Labrador Sea Water. Geophys. Res. Lett. 39, L24606 (2012).
Rhein, M., Kieke, D. & Steinfeldt, R. Advection of North Atlantic Deep Water from the Labrador Sea to the southern hemisphere. J. Geophys. Res. Oceans 120, 2471–2487 (2015).
Andres, M., Muglia, M., Bahr, F. & Bane, J. Continuous flow of upper Labrador Sea water around Cape Hatteras. Sci. Rep. 8, 4494 (2018).
Menviel, L. C. et al. Enhanced mid-depth southward transport in the northeast Atlantic at the Last Glacial Maximum despite a weaker AMOC. Paleoceanogr. Paleoclimatol. 35, e2019PA003793 (2020).
Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).
Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).
Moreno-Chamarro, E., Ferreira, D. & Marshall, J. Polar phasing and cross-equatorial heat transfer following a simulated abrupt NH warming of a glacial climate. Paleoceanogr. Paleoclimatol. 35, e2019PA003810 (2020).
Amante, C. & Eakins, B.W. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA (2009).
Schlitzer, R. Ocean Data View, https://odv.awi.de/ (2023).
Rasmussen, T. L., Oppo, D. W., Thomsen, E. & Lehman, S. J. Deep sea records from the southeast Labrador Sea: ocean circulation changes and ice-rafting events during the last 160,000 years. Paleoceanography 18, 1018 (2003).
Vidal, L. et al. Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth Planet. Sci. Lett. 146, 13–27 (1997).
Mulitza, S. et al. Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation. Paleoceanography 32, 622–633 (2017).
Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).
Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).
Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).
Muglia, J. et al. A global synthesis of high-resolution stable isotope data from benthic foraminifera of the last deglaciation. Sci. Data 10, 131 (2023).
Hoogakker, B., Elderfield, H., Oliver, K. & Crowhurst, S. Benthic foraminiferal oxygen isotope offsets over the last glacial-interglacial cycle. Paleoceanography 25, PA4229 (2010).
Thornalley, D. J. R., Elderfield, H. & McCave, I. N. Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21,000 years. Paleoceanography 25, PA1211 (2010).
McCave, I. N., Manighetti, B. & Robinson, S. G. Sortable silt and fine sediment size/composition slicing: parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 10, 593–610 (1995).
Tegzes, A. D., Jansen, E., Lorentzen, T. & Telford, R. J. Northward oceanic heat transport in the main branch of the Norwegian Atlantic Current over the late Holocene. Holocene 27, 1034–1044 (2017).
Lhardy, F. et al. A first intercomparison of the simulated LGM carbon results within PMIP-Carbon: role of the ocean boundary conditions. Paleoceanogr. Paleoclimatol. 36, e2021PA004302 (2021).
Henry, L. G. et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474 (2016).
Lauvset, S. K. et al. GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product. Earth Syst. Sci. Data 14, 5543–5572 (2022).
Wharton, J. H. & Renoult, M. Scripts used for the analyses of Wharton et al. (2024), Deeper and Stronger North Atlantic Gyre During the Last Glacial Maximum. Zenodo https://doi.org/10.5281/zenodo.10955898 (2024).
Marchitto, T. M. et al. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera. Geochim. Cosmochim. Acta 130, 1–11 (2014).
LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 33, L12604 (2006).
Proceedings of the Ocean Drilling Program. Volume 172. Scientific Results (Ocean Drilling Program, 2001).
Hendry, K. R. & Brzezinski, M. A. Using silicon isotopes to understand the role of the Southern Ocean in modern and ancient biogeochemistry and climate. Quat. Sci. Rev. 89, 13–26 (2014).
Yasuhara, M., Cronin, T. M., deMenocal, P. B., Okahashi, H. & Linsley, B. K. Abrupt climate change and collapse of deep-sea ecosystems. Proc. Natl Acad. Sci. 105, 1556–1560 (2008).
Svensson, A. et al. A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47–57 (2008).
Hagen, S. & Keigwin, L. D. Sea-surface temperature variability and deep water reorganisation in the subtropical North Atlantic during Isotope Stage 2–4. Mar. Geol. 189, 145–162 (2002).
Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).
Pöppelmeier, F. et al. Influence of ocean circulation and benthic exchange on deep Northwest Atlantic Nd isotope records during the past 30,000 years. Geochem. Geophys. Geosyst. 20, 4457–4469 (2019).
Böhm, E. et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature 517, 73–76 (2015).
Naughton, F. et al. A 12,000-yr pollen record off Cape Hatteras — pollen sources and mechanisms of pollen dispersion. Mar. Geol. 367, 118–129 (2015).
Jöhnck, J., Holbourn, A., Kuhnt, W. & Andersen, N. Oxygen isotope offsets in deep-water benthic foraminifera. J. Foraminifer. Res. 51, 225–244 (2021).