• Motoyoshi, M. et al. Through-silicon via (TSV). Proc. IEEE 97, 43–48 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Shen, W.-W. & Chen, K.-N. Three-dimensional integrated circuit (3D IC) key technology: through-silicon via (TSV). Nanoscale Res. Lett. 12, 1–9 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wong, S. et al. Monolithic 3D integrated circuits. In Proc. 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA) 1–4 (IEEE, 2007).

  • Topol, A. W. et al. Three-dimensional integrated circuits. IBM J. Res. Dev. 50, 491–506 (2006).

    Article 

    Google Scholar
     

  • Patti, R. S. Three-dimensional integrated circuits and the future of system-on-chip designs. Proc. IEEE 94, 1214–1224 (2006).

    Article 

    Google Scholar
     

  • Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf, W., Jerraya, A. A. & Grant, M. Multiprocessor system-on-chip (MPSoC) technology. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27, 1701–1713 (2008).

    Article 

    Google Scholar
     

  • Vinet, M. et al. Opportunities brought by sequential 3D CoolCubeTM integration. In Proc. 2016 46th European Solid-State Device Research Conference (ESSDERC) 226–229 (IEEE, 2016).

  • Clermidy, F., Billoint, O., Sarhan, H. & Thuries, S. Technology scaling: the CoolCubeTM paradigm. In Proc. 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) 1–4 (IEEE, 2015).

  • Park, J.-H., et al. Low temperature (≤ 380°C) and high performance Ge CMOS technology with novel source/drain by metal-induced dopants activation and high-k/metal gate stack for monolithic 3D integration. In Proc. 2008 IEEE International Electron Devices Meeting 1–4 (IEEE, 2008).

  • En, W. G. et al. The Genesis Process/sup TM: a new SOI wafer fabrication method. In Proc. 1998 IEEE International SOI Conference (Cat No. 98CH36199) 163–164 (IEEE, 1998).

  • Kim, M. et al. Fabrication of Ge-on-insulator wafers by Smart-CutTM with thermal management for undamaged donor Ge wafers. Semicond. Sci. Technol. 33, 015017 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kim, K. S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, J. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 18, 456–463 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoang, A. T. et al. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. 18, 1439–1447 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, B. et al. General low-temperature growth of two-dimensional nanosheets from layered and nonlayered materials. Nat. Commun. 14, 304 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yeh, C.-H., Cao, W., Pal, A., Parto, K. & Banerjee, K. Area-selective-CVD technology enabled top-gated and scalable 2D-heterojunction transistors with dynamically tunable Schottky barrier. In Proc. 2019 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2019).

  • Yeh, C.-H. et al. Ultrafast monolayer In/Gr-WS2-Gr hybrid photodetectors with high gain. ACS Nano 13, 3269–3279 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guimaraes, M. H. D. et al. Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10, 6392–6399 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ryckaert, J., et al. The Complementary FET (CFET) for CMOS scaling beyond N3. In Proc. 2018 IEEE Symposium on VLSI Technology 141–142 (IEEE, 2018).

  • Kang, J.-H. et al. Monolithic 3D integration of 2D materials-based electronics towards ultimate edge computing solutions. Nat. Mater. 22, 1470–1477 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Porter, D. A., Easterling, K. E. & Sherif, M. Y. in Phase Transformations in Metals and Alloys 382–440 (CRC Press, 1992).

  • Zhang, Y. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7, 8963–8971 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613, 274–279 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kozhakhmetov, A. et al. Scalable BEOL compatible 2D tungsten diselenide. 2D Mater. 7, 015029 (2019).

    Article 

    Google Scholar
     

  • Hwangbo, S., Hu, L., Hoang, A. T., Choi, J. Y. & Ahn, J.-H. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Givargizov, E. I. Oriented Crystallization on Amorphous Substrates (Springer, 2013).

  • Wang, Y. et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 610, 61–66 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kim, K. S. et al. The future of two-dimensional semiconductors beyond Moore’s law. Nat. Nanotechnol 19, 895–906 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samavedam, S. B. et al. Future logic scaling: Towards atomic channels and deconstructed chips. In Proc. 2020 IEEE International Electron Devices Meeting (IEDM) 1.1.1–1.1.10 (IEEE, 2020).

  • IRDS. International Roadmap for Devices and Systems (IRDS™) 2022 Edition: Executive Summary (IEEE, 2022).

  • Ahmed, Z., et al. Introducing 2D-FETs in device scaling roadmap using DTCO. In Proc. 2020 IEEE International Electron Devices Meeting (IEDM) 22–25 (IEEE, 2020).

  • Kresse, G. & Jürgen, F. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Jürgen, F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mignuzzi, S. et al. Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 91, 195411 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Liang, J. et al. Impact of post-lithography polymer residue on the electrical characteristics of MoS2 and WSe2 field effect transistors. Adv. Mater. Interfaces 6, 1801321 (2019).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *