Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).
Borg, L. E., Connelly, J. N., Boyet, M. & Carlson, R. W. Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477, 70–72 (2011).
Gaffney, A. M. & Borg, L. E. A young solidification age for the lunar magma ocean. Geochim. Cosmochim. Acta 140, 227–240 (2014).
Borg, L. E. et al. Isotopic evidence for a young lunar magma ocean. Earth Planet. Sci. Lett. 523, 115706 (2019).
Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon. Nat. Geosci. 2, 133–136 (2009).
Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017).
Greer, J. et al. 4.46 Ga zircons anchor chronology of lunar magma ocean. Geochem. Persp. Let. 27, 49–53 (2023).
Barboni, M. et al. High-precision U–Pb zircon dating identifies a major magmatic event on the Moon at 4.338 Ga. Sci. Adv. 10, eadn9871 (2024).
Cuk, M., Hamilton, D. P., Lock, S. J. & Stewart, S. T. Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth. Nature 539, 402–406 (2016).
Matsuyama, I., Trinh, A. & Keane, J. T. The lunar fossil figure in a Cassini state. Planet. Sci. J. 2, 232 (2021).
Woo, J. M. Y., Nesvorný, D., Scora, J. & Morbidelli, A. Terrestrial planet formation from a ring: long-term simulations accounting for the giant planet instability. Icarus 417, 116109 (2024).
Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).
Nesvorný, D. et al. Early bombardment of the moon: connecting the lunar crater record to the terrestrial planet formation. Icarus 399, 115545 (2023).
Day, J. M. D. & Walker, R. J. Highly siderophile element depletion in the Moon. Earth Planet. Sci. Lett. 423, 114–124 (2015).
Warren, P. H. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. Lett. 13, 201–240 (1985).
Borg, L. E. & Carlson, R. W. The evolving chronology of Moon formation. Annu. Rev. Earth Planet. Sci. 51, 25–52 (2023).
Maurice, M., Tosi, N., Schwinger, S., Breuer, D. & Kleine, T. A long-lived magma ocean on a young Moon. Sci. Adv. 6, eaba8949 (2020).
Jacobson, S. A. et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014).
Mezger, K., Maltese, A. & Vollstaedt, H. Accretion and differentiation of early planetary bodies as recorded in the composition of the silicate Earth. Icarus 365, 114497 (2021).
Thiemens, M. M., Sprung, P., Fonseca, R. O. C., Leitzke, F. P. & Münker, C. Early Moon formation inferred from hafnium–tungsten systematics. Nat. Geosci. 12, 696–700 (2019).
Borg, L. E., Brennecka, G. A. & Kruijer, T. S. The origin of volatile elements in the Earth–Moon system. Proc. Natl Acad. Sci. USA 119, e2115726119 (2022).
Kruijer, T. S., Archer, G. J. & Kleine, T. No 182W evidence for early Moon formation. Nat. Geosci. https://doi.org/10.1038/s41561-021-00820-2 (2021).
Garrick-Bethell, I., Perera, V., Nimmo, F. & Zuber, M. T. The tidal-rotational shape of the Moon and evidence for polar wander. Nature 512, 181–184 (2014).
O’Reilly, T. C. & Davies, G. F. Magma transport of heat on Io: a mechanism allowing a thick lithosphere. Geophys. Res. Lett. 8, 313–316 (1981).
Spencer, D. C., Katz, R. F. & Hewitt, I. J. Tidal controls on the lithospheric thickness and topography of Io from magmatic segregation and volcanism modelling. Icarus 359, 114352 (2021).
Miyazaki, Y. & Stevenson, D. J. A subsurface magma ocean on Io: exploring the steady state of partially molten planetary bodies. Planet. Sci. J. 3, 256 (2022).
Cuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).
Tian, Z., Wisdom, J. & Elkins-Tanton, L. Coupled orbital-thermal evolution of the early Earth–Moon system with a fast-spinning Earth. Icarus 281, 90–102 (2017).
Rufu, R. & Canup, R. M. Tidal evolution of the evection resonance/quasi-resonance and the angular momentum of the Earth–Moon system. J. Geophys. Res. Planets 125, e2019JE006312 (2020).
Ćuk, M., Lock, S. J., Stewart, S. T. & Hamilton, D. P. Tidal evolution of the Earth–Moon system with a high initial obliquity. Planet. Sci. J. 2, 147 (2021).
Siegler, M. A., Bills, B. G. & Paige, D. A. Effects of orbital evolution on lunar ice stability. J. Geophys. Res. Planets 116, E03010 (2011).
Downey, B. G., Nimmo, F. & Matsuyama, I. The thermal–orbital evolution of the Earth–Moon system with a subsurface magma ocean and fossil figure. Icarus 389, 115257 (2023).
Tian, Z. & Wisdom, J. Vertical angular momentum constraint on lunar formation and orbital history. Proc. Natl Acad. Sci. USA 117, 15460–15464 (2020).
Veeder, G. J., Matson, D. L., Johnson, T. V., Blaney, D. L. & Goguen, J. D. Io’s heat flow from infrared radiometry: 1983–1993. J. Geophys. Res. 99, 17095–17162 (1994).
Wilson, L. & Head, J. W. Generation, ascent and eruption of magma on the Moon: new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (part 1: theory). Icarus 283, 146–175 (2017).
Brandon, A. D. et al. Re-evaluating Nd-142/Nd-144 in lunar mare basalts with implications for the early evolution and bulk Sm/Nd of the Moon. Geochim. Cosmochim. Acta 73, 6421–6445 (2009).
Shearer, C. K. et al. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 60, 365–518 (2006).
Longhi, J. Experimental petrology and petrogenesis of mare volcanics. Geochim. Cosmochim. Acta 56, 2235–2251 (1992).
Borg, L. E., Gaffney, A. M. & Shearer, C. K. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteorit. Planet. Sci. 50, 715–732 (2015).
Whitaker, E. A. The lunar Procellarum Basin. In Multi-ring Basins: Formation and Evolution; Proc. Lunar and Planetary Science Conference 105–111 (Pergamon Press, 1981).
Garrick-Bethell, I., Wisdom, J. & Zuber, M. T. Evidence for a past high-eccentricity lunar orbit. Science 313, 652–655 (2006).
Miljković, K. et al. Large impact cratering during lunar magma ocean solidification. Nat. Commun. 12, 5433 (2021).
Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).
Marchi, S., Canup, R. M. & Walker, R. J. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11, 77–81 (2018).
Zhu, M.-H. et al. Reconstructing the late accretion history of the Moon. Nature 571, 226–229 (2019).
Zahnle, K. J., Lupu, R., Dobrovolskis, A. & Sleep, N. H. The tethered Moon. Earth Planet. Sci. Lett. 427, 74–82 (2015).
Korenaga, J. Rapid solidification of Earth’s magma ocean limits early lunar recession. Icarus 400, 115564 (2023).
Ray, R. D., Eanes, R. J. & Chao, B. F. Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry. Nature 381, 595–597 (1996).
Lainey, V., Arlot, J.-E., Karatekin, Ö. & van Hoolst, T. Strong tidal dissipation in Io and Jupiter from astrometric observations. Nature 459, 957–959 (2009).
Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966).
Farhat, M., Auclair-Desrotour, P., Boué, G. & Laskar, J. The resonant tidal evolution of the Earth–Moon distance. Astron. Astrophys. 665, L1 (2022).
Kleine, T. & Walker, R. J. Tungsten isotopes in planets. Ann. Rev. Earth Planet. Sci. 45, 389–417 (2017).
Salmon, J. & Canup, R. M. Lunar accretion from a Roche-interior fluid disk. Astrophys. J. 760, 83 (2012).
Watts, A. B. Isostasy and Flexure of the Lithosphere (Cambridge Univ. Press, 2001).
Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013).
Moore, W. B., Simon, J. I. & Webb, A. A. G. Heat-pipe planets. Earth Planet. Sci. Lett. 474, 13–19 (2017).
Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids (Oxford Univ. Press, 1986).
Cherniak, D. J. & Watson, E. B. Pb diffusion in zircon. Chem. Geol. 172, 5–24 (2001).
Meyer, J., Elkins-Tanton, L. & Wisdom, J. Coupled thermal–orbital evolution of the early Moon. Icarus 208, 1–10 (2010).
Murray, C. D. & Dermott, S. F. Solar System Dynamics (Cambridge Univ. Press, 2000); https://doi.org/10.1017/CBO9781139174817.
Citron, R. I., Smith, D. E., Stewart, S. T., Hood, L. L. & Zuber, M. T. The South Pole–Aitken Basin: constraints on impact excavation, melt, and ejecta. Geophys. Res. Lett. 51, e2024GL110034 (2024).
Jones, M. J. et al. A South Pole–Aitken impact origin of the lunar compositional asymmetry. Sci. Adv. 8, eabm8475 (2022).
Snape, J. F. et al. Ancient volcanism on the Moon: insights from Pb isotopes in the MIL 13317 and Kalahari 009 lunar meteorites. Earth Planet. Sci. Lett. 502, 84–95 (2018).
Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Univ. Press, 1989).
Croft, S. K. Cratering flow fields: implications for the excavation and transient expansion stages of crater formation. Lunar Planet. Sci. Conf. Proc. 3, 2347–2378 (1980).
Barnhart, C. J. & Nimmo, F. Role of impact excavation in distributing clays over Noachian surfaces. J. Geophys. Res. Planets 116, E01009 (2011).
Zahnle, K., Schenk, P., Levison, H. & Dones, L. Cratering rates in the outer Solar System. Icarus 163, 263–289 (2003).
Robbins, S. J. A new global database of lunar impact craters >1–2 km: 1. Crater locations and sizes, comparisons with published databases, and global analysis. J. Geophys. Res. Planets 124, 871–892 (2019).
Potter, R. W. K., Collins, G. S., Kiefer, W. S., McGovern, P. J. & Kring, D. A. Constraining the size of the South Pole–Aitken Basin impact. Icarus 220, 730–743 (2012).
Ganguly, J. & Tirone, M. Relationship between cooling rate and cooling age of a mineral: theory and applications to meteorites. Meteorit. Planet. Sci. 36, 167–175 (2001).