• Weibel, E. R. It takes more than cells to make a good lung. Am. J. Respir. Crit. Care Med. 187, 342–346 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Buckberg, G., Hoffman, J. I. E., Mahajan, A., Saleh, S. & Coghlan, C. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation 118, 2571–2587 (2008).

    PubMed 

    Google Scholar
     

  • Grigoryan, B. et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458–464 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKinnon, D. D., Brown, T. E., Kyburz, K. A., Kiyotake, E. & Anseth, K. S. Design and characterization of a synthetically accessible, photodegradable hydrogel for user-directed formation of neural networks. Biomacromolecules 15, 2808–2816 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandenberg, N. & Lutolf, M. P. In situ patterning of microfluidic networks in 3D cell-laden hydrogels. Adv. Mater. 28, 7450–7456 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Arakawa, C. K., Badeau, B. A., Zheng, Y. & DeForest, C. A. Multicellular vascularized engineered tissues through user‐programmable biomaterial photodegradation. Adv. Mater. 29, 1703156 (2017).


    Google Scholar
     

  • Daly, A. C., Prendergast, M. E., Hughes, A. J. & Burdick, J. A. Bioprinting for the biologist. Cell 184, 18–32 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pradhan, S., Keller, K. A., Sperduto, J. L. & Slater, J. H. Fundamentals of laser‐based hydrogel degradation and applications in cell and tissue engineering. Adv. Healthc. Mater. 6, 1700681 (2017).


    Google Scholar
     

  • O’Connor, C., Brady, E., Zheng, Y., Moore, E. & Stevens, K. R. Engineering the multiscale complexity of vascular networks. Nat. Rev. Mater. 7, 702–716 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Traore, M. A. & George, S. C. Tissue engineering the vascular tree. Tissue Eng. Part B Rev. 23, 505–514 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Keating, S. J., Leland, J. C., Cai, L. & Oxman, N. Toward site-specific and self-sufficient robotic fabrication on architectural scales. Sci. Robot. 2, eaam8986 (2017).

    PubMed 

    Google Scholar
     

  • Xing, J.-F., Zheng, M.-L. & Duan, X.-M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem. Soc. Rev. 44, 5031–5039 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Bellan, L. M. et al. Fabrication of an artificial 3-dimensional vascular network using sacrificial sugar structures. Soft Matter 5, 1354–1357 (2009).

    CAS 

    Google Scholar
     

  • Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional bioprinting of thick vascularized tissues. Proc. Natl Acad. Sci. USA 113, 3179–3184 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiménez-Torres, J. A., Peery, S. L., Sung, K. E. & Beebe, D. J. LumeNEXT: a practical method to pattern luminal structures in ECM Gels. Adv. Healthc. Mater. 5, 198–204 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, J. S. et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11, 768–774 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Y. et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl Acad. Sci. USA 109, 9342–9347 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Y. et al. Vacuum filling of complex microchannels with liquid metal. Lab Chip 17, 3043–3050 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Deng, F., Nguyen, Q.-K. & Zhang, P. Multifunctional liquid metal lattice materials through hybrid design and manufacturing. Addit. Manuf. 33, 101117 (2020).


    Google Scholar
     

  • Hwang, D., Barron, E. J. III, Haque, A. T. & Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity. Sci. Robot. 7, eabg2171 (2022).

    PubMed 

    Google Scholar
     

  • Tang, S.-Y., Tabor, C., Kalantar-Zadeh, K. & Dickey, M. D. Gallium liquid metal: the devil’s elixir. Annu. Rev. Mater. Res. 51, 381–408 (2021).

    CAS 

    Google Scholar
     

  • Khan, M. R., Eaker, C. B., Bowden, E. F. & Dickey, M. D. Giant and switchable surface activity of liquid metal via surface oxidation. Proc. Natl Acad. Sci. USA 111, 14047–14051 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, J. et al. Shaping a soft future: patterning liquid metals. Adv. Mater. 35, 19 (2023).


    Google Scholar
     

  • Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions. (NACE International, 1974).

  • Hardy, S. C. The surface tension of liquid gallium. J. Cryst. Growth 71, 602–606 (1985).

    CAS 

    Google Scholar
     

  • Walker, G. M. & Beebe, D. J. A passive pumping method for microfluidic devices. Lab Chip 2, 131–134 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Style, R. W., Jagota, A., Hui, C.-Y. & Dufresne, E. R. Elastocapillarity: surface tension and the mechanics of soft solids. Annu. Rev. Condens. Matter Phys. 8, 99–118 (2017).

    CAS 

    Google Scholar
     

  • Bico, J., Reyssat, É. & Roman, B. Elastocapillarity: when surface tension deforms elastic solids. Annu. Rev. Fluid Mech. 50, 629–659 (2018).

    MathSciNet 

    Google Scholar
     

  • Polacheck, W. J., Kutys, M. L., Tefft, J. B. & Chen, C. S. Microfabricated blood vessels for modeling the vascular transport barrier. Nat. Protoc. 14, 1425–1454 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, C. D. The physiological principle of minimum work. Proc. Natl Acad. Sci. USA 12, 207–214 (1926).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherman, T. F. On connecting large vessels to small. The meaning of Murray’s law. J. Gen. Physiol. 78, 431–453 (1981).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C., Baker, B. M., Chen, C. S. & Schwartz, M. A. Endothelial cell sensing of flow direction. Arterioscler. Thromb. Vasc. Biol. 33, 2130–2136 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Runions, A. et al. Modeling and visualization of leaf venation patterns. ACM Trans. Graph. 24, 702–711 (2005).


    Google Scholar
     

  • Runions, A., Lane, B. & Prusinkiewicz, P. in Proc. 3rd Eurographics Workshop on Natural Phenomena (NPH’07) (eds Ebert, D. & Mérillou, S.) 63–70 (Eurographics Association, 2007).

  • Oliver, G., Kipnis, J., Randolph, G. J. & Harvey, N. L. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. Cell 182, 270–296 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doyle, A. D. Generation of 3D collagen gels with controlled diverse architectures. Curr. Protoc. Cell Biol. 72, 10–20 (2016).

    PubMed Central 

    Google Scholar
     

  • Song, H.-H. et al. Transient support from fibroblasts is sufficient to drive functional vascularization in engineered tissues. Adv. Funct. Mater. 30, 2003777 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8, 162–175 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, K. et al. Plakophilin-2 truncating variants impair cardiac contractility by disrupting sarcomere stability and organization. Sci. Adv. 7, eabh3995 (2021).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bilodeau, R. A., Zemlyanov, D. Y. & Kramer, R. K. Liquid metal switches for environmentally responsive electronics. Adv. Mater. Interfaces 4, 1600913 (2017).


    Google Scholar
     

  • Kleiman, M., Ryu, K. A. & Esser‐Kahn, A. P. Determination of factors influencing the wet etching of polydimethylsiloxane using tetra‐n‐butylammonium fluoride. Macromol. Chem. Phys. 217, 284–291 (2015).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *