• Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2003).

  • Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Coleman, P. Theories of non-Fermi liquid behavior in heavy fermions. Phys. B Condens. Matter 259–261, 353–358 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Stewart, G. R. Non-Fermi-liquid behavior in d– and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 18, 633–638 (2022).

    Article 

    Google Scholar
     

  • Wang, P. et al. One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 605, 57–62 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yu, G. et al. Evidence for two dimensional anisotropic Luttinger liquids at Millikelvin temperatures. Nat. Commun. 14, 7025 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackiw, R. & Rebbi, C. Solitons with fermion number ½. Phys. Rev. D 13, 3398–3409 (1976).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article 
    ADS 

    Google Scholar
     

  • Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Stern, A. Anyons and the quantum Hall effect—a pedagogical review. Ann. Phys. 323, 204–249 (2008).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973). This paper proposed the RVB state, which initiated the research of spin liquids.

    Article 

    Google Scholar
     

  • Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Moessner, R. & Sondhi, S. L. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001). This paper concluded the search for an RVB liquid by demonstrating its existence in a microscopic model.

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Moessner, R. & Moore, J. E. Topological Phases of Matter (Cambridge Univ. Press, 2021).

  • Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Wen, X.-G. Quantum orders and symmetric spin liquids. Phys. Rev. B 65, 165113 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Read, N. & Chakraborty, B. Statistics of the excitations of the resonating-valence-bond state. Phys. Rev. B 40, 7133–7140 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Kalmeyer, V. & Laughlin, R. B. Equivalence of the resonating-valence-bond and fractional quantum Hall states. Phys. Rev. Lett. 59, 2095–2098 (1987).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pace, S. D., Morampudi, S. C., Moessner, R. & Laumann, C. R. Emergent fine structure constant of quantum spin ice is large. Phys. Rev. Lett. 127, 117205 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hermele, M. et al. Stability of U(1) spin liquids in two dimensions. Phys. Rev. B 70, 214437 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Lee, S.-S. Stability of the U(1) spin liquid with a spinon Fermi surface in 2+1 dimensions. Phys. Rev. B 78, 085129 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Huse, D. A., Krauth, W., Moessner, R. & Sondhi, S. L. Coulomb and liquid dimer models in three dimensions. Phys. Rev. Lett. 91, 167004 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hermele, M., Fisher, M. P. A. & Balents, L. Pyrochlore photons: the U(1) spin liquid in a S = 1/2 three-dimensional frustrated magnet. Phys. Rev. B 69, 064404 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ng, T.-K. & Lee, P. A. Power-law conductivity inside the Mott gap: application to κ-(BEDT–TTF)2Cu2(CN)3. Phys. Rev. Lett. 99, 156402 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Motrunich, O. I. Orbital magnetic field effects in spin liquid with spinon Fermi sea: possible application to κ-(ET)2 (Cu)2(CN)3. Phys. Rev. B 73, 155115 (2006). This paper predicted spinon Landau quantization in magnetic fields, a key step in the search for neutral fermions using quantum oscillations.

    Article 
    ADS 

    Google Scholar
     

  • Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018). This paper developed a theory of quantum oscillations in observables such as resistance and magnetization induced by spinon Landau quantization.

    Article 
    ADS 

    Google Scholar
     

  • Rao, P. & Sodemann, I. Cyclotron resonance inside the Mott gap: a fingerprint of emergent neutral fermions. Phys. Rev. B 100, 155150 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Khoo, J. Y., Pientka, F., Lee, P. A. & Villadiego, I. S. Probing the quantum noise of the spinon Fermi surface with NV centers. Phys. Rev. B 106, 115108 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Kohn, W. Excitonic phases. Phys. Rev. Lett. 19, 439–442 (1967).

    Article 
    ADS 

    Google Scholar
     

  • Blatt, J. M., Böer, K. W. & Brandt, W. Bose-Einstein condensation of excitons. Phys. Rev. 126, 1691–1692 (1962).

    Article 
    ADS 

    Google Scholar
     

  • Mott, N. F. The transition to the metallic state. Philos. Mag. 6, 287–309 (1961).

    Article 
    ADS 

    Google Scholar
     

  • Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetal-semiconductor transition. Rev. Mod. Phys. 40, 755–766 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Kwan, Y. H., Devakul, T., Sondhi, S. L. & Parameswaran, S. A. Theory of competing excitonic orders in insulating WTe2 monolayers. Phys. Rev. B 104, 125133 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y.-Q., Papaj, M. & Moore, J. E. Breakdown of helical edge state topologically protected conductance in time-reversal-breaking excitonic insulators. Phys. Rev. B 108, 205420 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hu, Y., Venderbos, J. W. F. & Kane, C. L. Fractional excitonic insulator. Phys. Rev. Lett. 121, 126601 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chowdhury, D., Sodemann, I. & Senthil, T. Mixed-valence insulators with neutral Fermi surfaces. Nat. Commun. 9, 1766 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article 

    Google Scholar
     

  • Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    Article 

    Google Scholar
     

  • Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    Article 

    Google Scholar
     

  • Du, L. et al. Evidence for a topological excitonic insulator in InAs/GaSb bilayers. Nat. Commun. 8, 1971 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, W. et al. Anomalously large resistance at the charge neutrality point in a zero-gap InAs/GaSb bilayer. New J. Phys. 20, 053062 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chen, D. et al. Excitonic insulator in a heterojunction moiré superlattice. Nat. Phys. 18, 1171–1176 (2022).

    Article 

    Google Scholar
     

  • Zhang, Z. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. 18, 1214–1220 (2022).

    Article 

    Google Scholar
     

  • Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cercellier, H. et al. Evidence for an excitonic insulator phase in 1T TiSe2. Phys. Rev. Lett. 99, 146403 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Campbell, D. J. et al. Intrinsic insulating ground state in transition metal dichalcogenide TiSe2. Phys. Rev. Mater. 3, 053402 (2019).

    Article 

    Google Scholar
     

  • Li, Z. et al. Possible excitonic insulating phase in quantum-confined Sb nanoflakes. Nano Lett. 19, 4960–4964 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wakisaka, Y. et al. Excitonic insulator state in Ta2NiSe5 probed by photoemission spectroscopy. Phys. Rev. Lett. 103, 026402 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 8, 14408 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukutani, K. et al. Electrical tuning of the excitonic insulator ground state of Ta2NiSe5. Phys. Rev. Lett. 123, 206401 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Werdehausen, D. et al. Coherent order parameter oscillations in the ground state of the excitonic insulator Ta2NiSe5. Sci. Adv. 4, eaap8652 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baldini, E. et al. The spontaneous symmetry breaking in Ta2NiSe5 is structural in nature. Proc. Natl Acad. Sci. USA 120, e2221688120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hossain, M. S. et al. Discovery of a topological exciton insulator with tunable momentum order. Preprint at https://arxiv.org/abs/2312.15862 (2023).

  • Huang, J. et al. Evidence for an excitonic insulator state in Ta2Pd3Te5. Phys. Rev. X 14, 011046 (2024).

  • Jia, Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys. 18, 87–93 (2022). This paper, together with ref. 65, identified a 2D natural crystal (monolayer WTe2) as an excitonic insulator.

    Article 

    Google Scholar
     

  • Sun, B. et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022). This paper, together with ref. 64, identified a 2D natural crystal (monolayer WTe2) as an excitonic insulator.

    Article 
    ADS 

    Google Scholar
     

  • Lee, P. A. Quantum oscillations in the activated conductivity in excitonic insulators: possible application to monolayer WTe2. Phys. Rev. B 103, L041101 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    Article 

    Google Scholar
     

  • Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. https://doi.org/10.1038/nphys4174 (2017).

  • Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, P. et al. Landau quantization and highly mobile fermions in an insulator. Nature 589, 225–229 (2021). This paper, together with ref. 74, reported quantum oscillations in monolayer WTe2 insulator.

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tang, Y. et al. Sign-alternating thermoelectric quantum oscillations and insulating Landau levels in monolayer WTe2. Preprint at https://arxiv.org/abs/2405.09665 (2024). This paper, together with ref. 73, reported quantum oscillations in monolayer WTe2 insulator.

  • Song, T. et al. Unconventional superconducting quantum criticality in monolayer WTe2. Nat. Phys. 20, 269–274 (2024).

    Article 

    Google Scholar
     

  • He, W.-Y. & Lee, P. A. Electronic density of states of a U(1) quantum spin liquid with spinon Fermi surface. I. Orbital magnetic field effects. Phys. Rev. B 107, 195155 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Knolle, J. & Moessner, R. A field guide to spin liquids. Annu. Rev. Condens. Matter Phys. 10, 451–472 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of Kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019).

    Article 

    Google Scholar
     

  • Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Law, K. T. & Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl Acad. Sci. USA 114, 6996–7000 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, W.-Y., Xu, X. Y., Chen, G., Law, K. T. & Lee, P. A. Spinon Fermi surface in a cluster Mott insulator model on a triangular lattice and possible application to 1T-TaS2. Phys. Rev. Lett. 121, 046401 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, Y. D. et al. Band insulator to Mott insulator transition in 1T-TaS2. Nat. Commun. 11, 4215 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritschel, T., Berger, H. & Geck, J. Stacking-driven gap formation in layered 1T-TaS2. Phys. Rev. B 98, 195134 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Z. et al. Effect of stacking order on the electronic state of 1T-TaS2. Phys. Rev. B 105, 035109 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Chen, Y. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 16, 218–224 (2020).

    Article 

    Google Scholar
     

  • Ruan, W. et al. Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy. Nat. Phys. 17, 1154–1161 (2021).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Evidence for a spinon Kondo effect in cobalt atoms on single-layer 1T-TaSe2. Nat. Phys. 18, 1335–1340 (2022).

    Article 

    Google Scholar
     

  • Zhang, Q. et al. Quantum spin liquid signatures in monolayer 1T-NbSe2. Nat. Commun. 15, 2336 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe2. Nat. Commun. 12, 1978 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, M. et al. Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator. Sci. Adv. 7, eabi6339 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakata, Y. et al. Monolayer 1T-NbSe2 as a Mott insulator. NPG Asia Mater. 8, e321–e321 (2016).

    Article 

    Google Scholar
     

  • Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006). This paper provided an exactly solvable model for quantum spin liquids.

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Plumb, K. W. et al. α-RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Leahy, I. A. et al. Anomalous thermal conductivity and magnetic torque response in the honeycomb magnet α-RuCl3. Phys. Rev. Lett. 118, 187203 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Banerjee, A. et al. Excitations in the field-induced quantum spin liquid state of α-RuCl3. npj Quantum Mater. 3, 8 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hentrich, R. et al. Unusual phonon heat transport in α-RuCl3: strong spin-phonon scattering and field-induced spin gap. Phys. Rev. Lett. 120, 117204 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • McClarty, P. A. et al. Topological magnons in Kitaev magnets at high fields. Phys. Rev. B 98, 060404 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Joshi, D. G. Topological excitations in the ferromagnetic Kitaev-Heisenberg model. Phys. Rev. B 98, 060405 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Gordon, J. S., Catuneanu, A., Sørensen, E. S. & Kee, H.-Y. Theory of the field-revealed Kitaev spin liquid. Nat. Commun. 10, 2470 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickey, C. & Trebst, S. Emergence of a field-driven U(1) spin liquid in the Kitaev honeycomb model. Nat. Commun. 10, 530 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ponomaryov, A. N. et al. Nature of magnetic excitations in the high-field phase of α-RuCl3. Phys. Rev. Lett. 125, 037202 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Magnetic excitations and continuum of a possibly field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett. 119, 227202 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Czajka, P. et al. Planar thermal Hall effect of topological bosons in the Kitaev magnet α-RuCl3. Nat. Mater. 22, 36–41 (2023). This paper reported the thermal Hall data incompatible with the half-quantization expected for the Majorana transport in α-RuCl3.

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Czajka, P. et al. Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3. Nat. Phys. 17, 915–919 (2021). This paper reported the magneto-oscillations in the thermal conductivity of α-RuCl3.

    Article 

    Google Scholar
     

  • Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yokoi, T. et al. Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate α-RuCl3. Science 373, 568–572 (2021).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Zhang, E. Z., Chern, L. E. & Kim, Y. B. Topological magnons for thermal Hall transport in frustrated magnets with bond-dependent interactions. Phys. Rev. B 103, 174402 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bruin, J. A. N. et al. Robustness of the thermal Hall effect close to half-quantization in α-RuCl3. Nat. Phys. 18, 401–405 (2022).

    Article 

    Google Scholar
     

  • Villadiego, I. S. Pseudoscalar U(1) spin liquids in α-RuCl3. Phys. Rev. B 104, 195149 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bruin, J. A. N. et al. Origin of oscillatory structures in the magnetothermal conductivity of the putative Kitaev magnet α-RuCl3. APL Mater. 10, 090703 (2022).

  • Kubota, Y., Tanaka, H., Ono, T., Narumi, Y. & Kindo, K. Successive magnetic phase transitions in α-RuCl3: XY-like frustrated magnet on the honeycomb lattice. Phys. Rev. B 91, 094422 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Cao, H. B. et al. Low-temperature crystal and magnetic structure of α-RuCl3. Phys. Rev. B 93, 134423 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Lefrançois, É. et al. Oscillations in the magnetothermal conductivity of α−RuCl3: evidence of transition anomalies. Phys. Rev. B 107, 064408 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, H. et al. Sample-dependent and sample-independent thermal transport properties of α-RuCl3. Phys. Rev. Mater. 7, 114403 (2023).

    Article 

    Google Scholar
     

  • Zhang, H. et al. Stacking disorder and thermal transport properties of α-RuCl3. Phys. Rev. Mater. 8, 014402 (2024).

    Article 

    Google Scholar
     

  • Zhang, H. et al. Anisotropy of thermal conductivity oscillations in relation to the Kitaev spin liquid phase. Preprint at https://arxiv.org/abs/2310.03917 (2023).

  • Hong, X. et al. Phonon thermal transport shaped by strong spin-phonon scattering in a Kitaev material Na2Co2TeO6. npj Quantum Mater. 9, 18 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Hong, X. et al. Spinon heat transport in the three-dimensional quantum magnet PbCuTe2O6. Phys. Rev. Lett. 131, 256701 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yamashita, M. et al. Presence and absence of itinerant gapless excitations in the quantum spin liquid candidate EtMe2Sb[Pd(dmit)2]2. Phys. Rev. B 101, 140407 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ni, J. M. et al. Absence of magnetic thermal conductivity in the quantum spin liquid candidate EtNe3Sb[Pd(dmit)2]2. Phys. Rev. Lett. 123, 247204 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bourgeois-Hope, P. et al. Thermal conductivity of the quantum spin liquid candidate EtMe3Sb[Pd(dnit)2]2: no evidence of mobile gapless excitations. Phys. Rev. X 9, 041051 (2019).


    Google Scholar
     

  • Ioffe, L. B. & Larkin, A. I. Gapless fermions and gauge fields in dielectrics. Phys. Rev. B 39, 8988–8999 (1989). This paper developed the so-called Ioffe-Larkin rule, which is important for understanding response functions of fractionalized systems.

    Article 
    ADS 

    Google Scholar
     

  • Lee, P. A. & Nagaosa, N. Gauge theory of the normal state of high-Tc superconductors. Phys. Rev. B 46, 5621–5639 (1992).

    Article 
    ADS 

    Google Scholar
     

  • He, W.-Y. & Lee, P. A. Electronic density of states of a U1 quantum spin liquid with spinon Fermi surface. I. Orbital magnetic field effects. Phys. Rev. B 107, 195155 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science 346, 1208–1212 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xiang, Z. et al. Quantum oscillations of electrical resistivity in an insulator. Science 362, 65–69 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Han, Z., Li, T., Zhang, L., Sullivan, G. & Du, R.-R. Anomalous conductance oscillations in the hybridization gap of InAs/GaSb quantum wells. Phys. Rev. Lett. 123, 126803 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xiao, D., Liu, C.-X., Samarth, N. & Hu, L.-H. Anomalous quantum oscillations of interacting electron-hole gases in inverted type-II InAs/GaSb quantum wells. Phys. Rev. Lett. 122, 186802 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zheng, G. et al. Unconventional magnetic oscillations in Kagome Mott insulators. Preprint at arXiv https://arxiv.org/abs/2310.07989 (2023).

  • Li, L., Sun, K., Kurdak, C. & Allen, J. W. Emergent mystery in the Kondo insulator samarium hexaboride. Nat. Rev. Phys. 2, 463–479 (2020).

    Article 

    Google Scholar
     

  • Shen, H. & Fu, L. Quantum oscillation from in-gap states and a non-Hermitian Landau level problem. Phys. Rev. Lett. 121, 026403 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, L., Song, X.-Y. & Wang, F. Quantum oscillation in narrow-gap topological insulators. Phys. Rev. Lett. 116, 046404 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ram, P. & Kumar, B. Theory of quantum oscillations of magnetization in Kondo insulators. Phys. Rev. B 96, 075115 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Knolle, J. & Cooper, N. R. Quantum oscillations without a Fermi surface and the anomalous de Haas–van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Knolle, J. & Cooper, N. R. Anomalous de Haas–van Alphen effect in InAs/GaSb quantum wells. Phys. Rev. Lett. 118, 176801 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Erten, O., Chang, P.-Y., Coleman, P. & Tsvelik, A. M. Skyrme insulators: insulators at the brink of superconductivity. Phys. Rev. Lett. 119, 057603 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • He, W.-Y. & Lee, P. A. Quantum oscillation of thermally activated conductivity in a monolayer WTe2-like excitonic insulator. Phys. Rev. B 104, L041110 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zhu, J., Li, T., Young, A. F., Shan, J. & Mak, K. F. Quantum oscillations in 2D insulators induced by graphite gates. Phys. Rev. Lett. 127, 247702 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cooper, N. R. & Kelsall, J. Quantum oscillations in an impurity-band Anderson insulator. Sci. Post Phys.15, 118 (2023).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Pirie, H. et al. Visualizing the atomic-scale origin of metallic behavior in Kondo insulators. Science 379, 1214–1218 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pal, H. K., Piéchon, F., Fuchs, J.-N., Goerbig, M. & Montambaux, G. Chemical potential asymmetry and quantum oscillations in insulators. Phys. Rev. B 94, 125140 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Singh, G. & Pal, H. K. Effect of many-body interaction on de Haas–van Alphen oscillations in insulators. Phys. Rev. B 108, L201103 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wu, S. The detection of unconventional quantum oscillations in insulating 2D materials. 2D Mater. 11, 033004 (2024).

    Article 

    Google Scholar
     

  • Checkelsky, J. G. & Ong, N. P. Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B 80, 81413 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 96807 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Ni, D., Gui, X., Powderly, K. M. & Cava, R. J. Honeycomb‐structure RuI3, a new quantum material related to α‐RuCl3. Adv. Mater. 34, e2106831 (2022).

  • Zhong, R., Gao, T., Ong, N. P. & Cava, R. J. Weak-field induced nonmagnetic state in a Co-based honeycomb. Sci. Adv. 6, eaay6953 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. A magnetic continuum in the cobalt-based honeycomb magnet BaCo2(AsO4)2. Nat. Mater. 22, 58–63 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Halloran, T. et al. Geometrical frustration versus Kitaev interactions in BaCo2(AsO4)2. Proc. Natl Acad. Sci. USA 120, e2215509119 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onyszczak, M. et al. A platform for far-infrared spectroscopy of quantum materials at millikelvin temperatures. Rev. Sci. Instrum. 94, 103903 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Potter, A. C., Senthil, T. & Lee, P. A. Mechanisms for sub-gap optical conductivity in Herbertsmithite. Phys. Rev. B 87, 245106 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wan, Y. & Armitage, N. P. Resolving continua of fractional excitations by spinon echo in THz 2D coherent spectroscopy. Phys. Rev. Lett. 122, 257401 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hart, O. & Nandkishore, R. Extracting spinon self-energies from two-dimensional coherent spectroscopy. Phys. Rev. B 107, 205143 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gao, Q., Liu, Y., Liao, H. & Wan, Y. Two-dimensional coherent spectrum of interacting spinons from matrix product states. Phys. Rev. B 107, 165121 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chatterjee, S., Rodriguez-Nieva, J. F. & Demler, E. Diagnosing phases of magnetic insulators via noise magnetometry with spin qubits. Phys. Rev. B 99, 104425 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Khoo, J. Y., Pientka, F. & Sodemann, I. The universal shear conductivity of Fermi liquids and spinon Fermi surface states and its detection via spin qubit noise magnetometry. New J. Phys. 23, 113009 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lee, P. A. & Morampudi, S. Proposal to detect emergent gauge field and its Meissner effect in spin liquids using NV centers. Phys. Rev. B 107, 195102 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Han, W., Maekawa, S. & Xie, X.-C. Spin current as a probe of quantum materials. Nat. Mater. 19, 139–152 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023). This paper reported the fractional quantum anomalous Hall effect.

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).


    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Anderson, E. et al. Programming correlated magnetic states with gate-controlled moiré geometry. Science 381, 325–330 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sheng, D. N., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).


    Google Scholar
     

  • Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Baird, D., Hughes, R. I. G. & Nordmann, A. Heinrich Hertz: Classical Physicist, Modern Philosopher (Springer-Verlag, 1998).

  • Laumann, C. R. & Moessner, R. Hybrid dyons, inverted Lorentz force, and magnetic Nernst effect in quantum spin ice. Phys. Rev. B 108, L220402 (2023). This paper predicted a novel variant of the Nernst effect in insulators induced by physics of quantum spin ice.

    Article 
    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *