Tesla, N. Valvular conduit. US patent 1,329,559 (1920).
de Vries, S. F., Florea, D., Homburg, F. & Frijns, A. Design and operation of a Tesla-type valve for pulsating heat pipes. Int. J. Heat Mass Transf. 105, 1–11 (2017).
Jin, Z.-j, Gao, Z.-x, Chen, M.-r & Qian, J.-y Parametric study on Tesla valve with reverse flow for hydrogen decompression. Int. J. Hydrogen Energy 43, 8888–8896 (2018).
Porwal, P. R., Thompson, S. M., Walters, D. K. & Jamal, T. Heat transfer and fluid flow characteristics in multistaged Tesla valves. Numer. Heat Transf. A Appl. 73, 347–365 (2018).
Nguyen, Q. M., Abouezzi, J. & Ristroph, L. Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve. Nat. Commun. 12, 2884 (2021).
Purwidyantri, A. & Prabowo, B. A. Tesla valve microfluidics: the rise of forgotten technology. Chemosensors 11, 256 (2023).
Lee, S., Broido, D., Esfarjani, K. & Chen, G. Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015).
Huberman, S. et al. Observation of second sound in graphite at temperatures above 100 K. Science 364, 375–379 (2019).
Jeong, J., Li, X., Lee, S., Shi, L. & Wang, Y. Transient hydrodynamic lattice cooling by picosecond laser irradiation of graphite. Phys. Rev. Lett. 127, 085901 (2021).
Huang, X. et al. Observation of phonon Poiseuille flow in isotopically purified graphite ribbons. Nat. Commun. 14, 2044 (2023).
Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).
Sulpizio, J. A. et al. Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576, 75–79 (2019).
Ku, M. J. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).
Cepellotti, A. et al. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015).
Guo, Y. & Wang, M. Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 595, 1–44 (2015).
Beardo, A. et al. Observation of second sound in a rapidly varying temperature field in Ge. Sci. Adv. 7, eabg4677 (2021).
Ding, Z. et al. Observation of second sound in graphite over 200 K. Nat. Commun. 13, 285 (2022).
Machida, Y. et al. Observation of Poiseuille flow of phonons in black phosphorus. Sci. Adv. 4, eaat3374 (2018).
Martelli, V., Jiménez, J. L., Continentino, M., Baggio-Saitovitch, E. & Behnia, K. Thermal transport and phonon hydrodynamics in strontium titanate. Phys. Rev. Lett. 120, 125901 (2018).
Shang, M.-Y., Zhang, C., Guo, Z. & Lü, J.-T. Heat vortex in hydrodynamic phonon transport of two-dimensional materials. Sci. Rep. 10, 8272 (2020).
Guo, Y., Zhang, Z., Nomura, M., Volz, S. & Wang, M. Phonon vortex dynamics in graphene ribbon by solving Boltzmann transport equation with ab initio scattering rates. Int. J. Heat Mass Transf. 169, 120981 (2021).
Zhang, C., Chen, S. & Guo, Z. Heat vortices of ballistic and hydrodynamic phonon transport in two-dimensional materials. Int. J. Heat Mass Transf. 176, 121282 (2021).
Guo, Y. & Wang, M. Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway’s dual relaxation model. Phys. Rev. B 96, 134312 (2017).
Ding, Z. et al. Phonon hydrodynamic heat conduction and Knudsen minimum in graphite. Nano Lett. 18, 638–649 (2018).
Li, X. & Lee, S. Crossover of ballistic, hydrodynamic, and diffusive phonon transport in suspended graphene. Phys. Rev. B 99, 085202 (2019).
Guo, Y. et al. Size effect on phonon hydrodynamics in graphite microstructures and nanostructures. Phys. Rev. B 104, 075450 (2021).
Chen, G. Non-Fourier phonon heat conduction at the microscale and nanoscale. Nat. Rev. Phys. 3, 555–569 (2021).
Liao, B. (ed.) Nanoscale Energy Transport 2053–2563 (IOP, 2020).
Ghosh, K., Kusiak, A. & Battaglia, J.-L. Phonon hydrodynamics in crystalline materials. J. Phys. Condens. Matter 34, 323001 (2022).
Li, B., Wang, L. & Casati, G. Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004).
Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).
Martínez-Pérez, M. J., Fornieri, A. & Giazotto, F. Rectification of electronic heat current by a hybrid thermal diode. Nat. Nanotechnol. 10, 303–307 (2015).
Shrestha, R. et al. Dual-mode solid-state thermal rectification. Nat. Commun. 11, 4346 (2020).
Zhang, Y. et al. Simultaneous electrical and thermal rectification in a monolayer lateral heterojunction. Science 378, 169–175 (2022).
Malik, F. K. & Fobelets, K. A review of thermal rectification in solid-state devices. J. Semicond. 43, 103101 (2022).
Wang, H. et al. Experimental study of thermal rectification in suspended monolayer graphene. Nat. Commun. 8, 15843 (2017).
Kasprzak, M. et al. High-temperature silicon thermal diode and switch. Nano Energy 78, 105261 (2020).
Desmarchelier, P., Tanguy, A. & Termentzidis, K. Thermal rectification in asymmetric two-phase nanowires. Phys. Rev. B 103, 014202 (2021).
Wirtz, L. & Rubio, A. The phonon dispersion of graphite revisited. Solid State Commun. 131, 141–152 (2004).
Lindsay, L., Broido, D. & Mingo, N. Flexural phonons and thermal transport in multilayer graphene and graphite. Phys. Rev. B 83, 235428 (2011).
Schelling, P. & Keblinski, P. Thermal expansion of carbon structures. Phys. Rev. B 68, 035425 (2003).
Lee, S., Li, X. & Guo, R. Thermal resistance by transition between collective and non-collective phonon flows in graphitic materials. Nanoscale Microscale Thermophys. Eng. 23, 247–258 (2019).
Huang, X., Guo, Y., Volz, S. & Nomura, M. Mapping phonon hydrodynamic strength in micrometer-scale graphite structures. Appl. Phys. Express 15, 105001 (2022).
Huang, X. et al. Coherent and incoherent impacts of nanopillars on the thermal conductivity in silicon nanomembranes. ACS Appl. Mater. Interfaces 12, 25478–25483 (2020).
Anufriev, R. & Nomura, M. Ray phononics: thermal guides, emitters, filters, and shields powered by ballistic phonon transport. Mater. Today Phys. 15, 100272 (2020).
FreePATHS – free phonon and thermal simulator. GitHub https://github.com/anufrievroman/freepaths (2024).
Ravichandran, N. K. & Broido, D. Phonon-phonon interactions in strongly bonded solids: selection rules and higher-order processes. Phys. Rev. X 10, 021063 (2020).
Klarbring, J., Hellman, O., Abrikosov, I. A. & Simak, S. I. Anharmonicity and ultralow thermal conductivity in lead-free halide double perovskites. Phys. Rev. Lett. 125, 045701 (2020).
Guyer, R. & Krumhansl, J. Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778 (1966).
Kim, W. Strategies for engineering phonon transport in thermoelectrics. J. Mater. Chem. C 3, 10336–10348 (2015).
Maznev, A., Every, A. & Wright, O. Reciprocity in reflection and transmission: what is a ‘phonon diode’? Wave Motion 50, 776–784 (2013).
Geurs, J. et al. Rectification by hydrodynamic flow in an encapsulated graphene Tesla valve. Preprint at https://arxiv.org/abs/2008.04862 (2020).
Hu, J., Ruan, X. & Chen, Y. P. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett. 9, 2730–2735 (2009).
Taniguchi, T. & Yamaoka, S. Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure. J. Cryst. Growth 222, 549–557 (2001).
Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. Growth 303, 525–529 (2007).
Pope, A., Zawilski, B. & Tritt, T. Description of removable sample mount apparatus for rapid thermal conductivity measurements. Cryogenics 41, 725–731 (2001).
Maire, J. Thermal Phonon Transport in Silicon Nanosturctures. PhD thesis, Univ. Tokyo (2015).
Nihira, T. & Iwata, T. Temperature dependence of lattice vibrations and analysis of the specific heat of graphite. Phys. Rev. B 68, 134305 (2003).
Ho, C. Y., Powell, R. W. & Liley, P. E. Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1, 279–421 (1972).
Huang, X. et al. Super-ballistic width dependence of thermal conductivity in graphite nanoribbons and microribbons. Nanomaterials 13, 1854 (2023).
Monteverde, U. et al. Under pressure: control of strain, phonons and bandgap opening in rippled graphene. Carbon 91, 266–274 (2015).
Alofi, A. & Srivastava, G. Thermal conductivity of graphene and graphite. Phys. Rev. B 87, 115421 (2013).
Cai, W. et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10, 1645–1651 (2010).
Aliane, A. et al. Mechanical modeling and characterization of suspended cooled silicon bolometers for sub-millimeter and millimeter waves polarization detection. Sens. Actuators A Phys. 296, 254–264 (2019).
Wang, M. C. et al. Mechanical instability driven self-assembly and architecturing of 2D materials. 2D Mater. 4, 022002 (2017).
Asheghi, M., Touzelbaev, M. N., Goodson, K. E., Leung, Y. K. & Wong, S. S. Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates. J. Heat Transf. 120, 30–36 (1998).
Tang, J. et al. Holey silicon as an efficient thermoelectric material. Nano Lett. 10, 4279–4283 (2010).