Prelas, M. A. et al. Nuclear Batteries and Radioisotopes (Springer, 2016).
Prelas, M. A. et al. A review of nuclear batteries. Prog. Nucl. Energ. 75, 117–148 (2014).
Olsen, L. C., Cabauy, P. & Elkind, B. J. et al. Betavoltaic power sources. Phys. Today 65, 35–38 (2012).
Spencer, M. G., & Alam, T. High power direct energy conversion by nuclear batteries. Appl. Phys. Rev. 6, 031305 (2019).
Liu, B. J. et al. Alpha-voltaic battery on diamond Schottky barrier diode. Diam. Relat. Mater. 87, 35–42 (2018).
Weaver, C. L. et al. Radiation resistant PIDECα cell using photon intermediate direct energy conversion and a 210Po source. Appl. Radiat. Isotopes. 132, 110–115 (2018).
Nullmeyer, B. R. et al. Self-healing effects in a semi-ordered liquid for stable electronic conversion of high-energy radiation. Sci Rep. 8, 12404 (2018).
Gao, R. et al. Isoelectronic aluminum-doped gallium nitride alpha-voltaic cell with efficiency exceeding 4.5%. Commun Mater. 4, 50 (2023).
Sychov, M. et al. Alpha indirect conversion radioisotope power source. Appl. Radiat. Isotopes 66, 173–177 (2008).
Cress, C. D., Landi, B. J., Raffaelle, R. P. & Wilt, D. M. InGaP alpha voltaic batteries: synthesis, modeling, and radiation tolerance. J. Appl. Phys. 100, 114519 (2006).
Sperling, J. M. et al. Structural and spectroscopic investigation of two plutonium mellitates. Inorg. Chem. 59, 3085–3090 (2020).
Sperling, J. M. et al. Pronounced pressure dependence of electronic transitions for americium compared to isomorphous neodymium and samarium mellitates. Inorg. Chem. 60, 476–483 (2020).
Sperling, J. M. et al. C Synthesis, characterization, and high-pressure studies of a 3D berkelium(III) carboxylate framework material. Chem. Commun. 58, 2200–2203 (2022).
Galley, S. S. et al. Synthesis and characterization of tris-chelate complexes for understanding f-orbital bonding in later actinides. J. Am. Chem. Soc. 141, 2356–2366 (2019).
Marcelo, O. R. et al. Modeling, structural, and spectroscopic studies of lanthanide-organic frameworks. J. Phys. Chem. B 113, 12181–12188 (2009).
Knoll, G. F. Radiation Detection and Measurement (Wiley, 2010).
Tsoulfanidis, N. et al. Measurement and Detection of Radiation (CRC Press, 2021).
Horrocks, D. L. The mechanisms of the liquid scintillation process. Liq. Scintillation 1976, 1–16 (1976).
Gilson, S. E. et al. Unprecedented radiation resistant thorium–binaphthol metal–organic framework. J. Am. Chem. Soc. 142, 13299–13304 (2020).
Zhu, L. et al. Identifying the recognition site for selective trapping of 99TcO4– in a hydrolytically stable and radiation resistant cationic metal–organic framework. J. Am. Chem. Soc. 139, 14873–14876 (2017).
David, P. M. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).
Yin, J. W. et al. Tuning octahedral tilting by doping to prevent detrimental phase transition and extend carrier lifetime in organometallic perovskites. J. Am. Chem. Soc. 145, 5393–5399 (2023).
Russo, J. et al. A radioluminescent nuclear battery using volumetric configuration: 63Ni solution/ZnS:Cu,Al/InGaP. Appl. Radiat. Isotopes 130, 66–74 (2017).
Jiang, T. et al. In-depth analysis of the internal energy conversion of nuclear batteries and radiation degradation of key materials. Energy Technol. 8, 2000667 (2020).
Xu, Z. et al. Enhanced radioluminescent nuclear battery by optimizing structural design of the phosphor layer. Int. J. Energy Res. 42, 1729–1737 (2018).
Tang, X. et al. Physical parameters of phosphor layers and their effects on the device properties of beta-radioluminescent nuclear batteries. Energy Technol. 3, 1121–1129 (2015).
Tang, X.-B. et al. Temperature effect of a radioluminescent nuclear battery based on 147Pm/ZnS:Cu/GaAs. Appl. Radiat. Isotopes 97, 118–124 (2015).
Xu, Z. et al. Designing performance enhanced nuclear battery based on the Cd-109 radioactive source. Int. J. Energy Res. 44, 508–517 (2020).
Ambadas, B. P. Novel nuclear batteries based on radioluminescence. Energy Technol. 10, 2200285 (2022).
Lei, Y. Demonstration and aging test of a radiation resistant strontium-90 betavoltaic mechanism. Appl. Phys. Lett. 116, 153901 (2020).
Dolomanov, O. V. et al. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).
Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).
Wrighton, M. S., Ginley, D. S. & Morse, D. L. A technique for the determination of absolute emission quantum yields of powdered samples. J. Phys. Chem. 78, 2229–2232 (1974).
Wang, J.-X. et al. Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators. Nat. Photon. 16, 869–875 (2022).
Yang, L. et al. Emergence of a lanthanide chalcogenide as an ideal scintillator for a flexible X-ray detector. Angew. Chem. Int. Ed. 62, e202306465 (2023).
Wang, J.-X. et al. Aggregation-induced fluorescence enhancement for efficient X-ray imaging scintillators and high-speed optical wireless communication. ACS Materials Lett. 9, 1668–1675 (2022).
Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).
Allison, J. et al. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. A 835, 186–225 (2016).