Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).
Aeppli, A., Kim, K., Warfield, W., Safronova, M. S. & Ye, J. Clock with 8 × 10−19 systematic uncertainty. Phys. Rev. Lett. 133, 023401 (2024).
Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. EPL – Europhys. Lett. 61, 181 (2003).
Tkalya, E. V., Varlamov, V. O., Lomonosov, V. V. & Nikulin, S. A. Processes of the nuclear isomer 229mTh(3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons. Phys. Scr. 53, 296 (1996).
Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022).
Ye, J. & Zoller, P. Essay: quantum sensing with atomic, molecular, and optical platforms for fundamental physics. Phys. Rev. Lett. 132, 190001 (2024).
von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).
Peik, E. et al. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 6, 034002 (2021).
Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).
Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).
Fadeev, P., Berengut, J. C. & Flambaum, V. V. Sensitivity of 229Th nuclear clock transition to variation of the fine-structure constant. Phys. Rev. A 102, 052833 (2020).
Nickerson, B. S. et al. Driven electronic bridge processes via defect states in 229Th-doped crystals. Phys. Rev. A 103, 053120 (2021).
Helmer, R. G. & Reich, C. W. An excited state of 229Th at 3.5 eV. Phys. Rev. C 49, 1845–1858 (1994).
Guimarães-Filho, Z. O. & Helene, O. Energy of the 3/2+ state of 229Th reexamined. Phys. Rev. C 71, 044303 (2005).
Beck, B. R. et al. Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett. 98, 142501 (2007).
Beck, B. R. et al. Improved Value for the Energy Splitting of the Ground-State Doublet in the Nucleus 229mTh Report No. LLNL-PROC-415170 (Lawrence Livermore National Laboratory, 2009).
Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).
Seiferle, B. et al. Energy of the 229Th nuclear clock transition. Nature 573, 243–246 (2019).
Masuda, T. et al. X-ray pumping of the 229Th nuclear clock isomer. Nature 573, 238–242 (2019).
Yamaguchi, A. et al. Energy of the 229Th nuclear clock isomer determined by absolute γ-ray energy difference. Phys. Rev. Lett. 123, 222501 (2019).
Sikorsky, T. et al. Measurement of the 229Th isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett. 125, 142503 (2020).
von der Wense, L. et al. Direct detection of the 229Th nuclear clock transition. Nature 533, 47–51 (2016).
Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).
Hiraki, T. et al. Controlling 229Th isomeric state population in a VUV transparent crystal. Nat. Commun. 15, 5536 (2024).
Yamaguchi, A. et al. Laser spectroscopy of triply charged 229Th isomer for a nuclear clock. Nature 629, 62–66 (2024).
Tiedau, J. et al. Laser excitation of the Th-229 nucleus. Phys. Rev. Lett. 132, 182501 (2024).
Elwell, R. et al. Laser excitation of the 229Th nuclear isomeric transition in a solid-state host. Phys. Rev. Lett. 133, 013201 (2024).
Tkalya, E. V. Spontaneous emission probability for M1 transition in a dielectric medium: 229mTh (3/2+, 3.5±1.0 eV) decay. JETP Lett. 71, 311–313 (2000).
Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010).
Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).
Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).
Milner, W. R. et al. Demonstration of a timescale based on a stable optical carrier. Phys. Rev. Lett. 123, 173201 (2019).
Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
Dreissen, L. S. et al. High-precision Ramsey-comb spectroscopy based on high-harmonic generation. Phys. Rev. Lett. 123, 143001 (2019).
Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement avity. Phys. Rev. Lett. 94, 193201 (2005).
Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).
Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).
Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).
Pupeza, I., Zhang, C., Högner, M. & Ye, J. Extreme-ultraviolet frequency combs for precision metrology and attosecond science. Nat. Photon. 15, 175–186 (2021).
Zhang, C. et al. Tunable VUV frequency comb for 229mTh nuclear spectroscopy. Opt. Lett. 47, 5591 (2022).
Ycomb – Compact frequency comb. IMRA https://www.imra.com/products/imra-scientific/ycomb-100 (2021).
Pronin, O. et al. Ultrabroadband efficient intracavity XUV output coupler. Opt. Express 19, 10232–10240 (2011).
Fischer, J. et al. Efficient XUV-light out-coupling of intra-cavity high harmonics by a coated grazing-incidence plate. Opt. Express 30, 30969–30979 (2022).
Beeks, K. et al. Growth and characterization of thorium-doped calcium fluoride single crystals. Sci. Rep. 13, 3897 (2023).
Beeks, K. et al. Optical transmission enhancement of ionic crystals via superionic fluoride transfer: growing VUV-transparent radioactive crystals. Phys. Rev. B 109, 094111 (2024).
Stellmer, S., Schreitl, M. & Schumm, T. Radioluminescence and photoluminescence of Th:CaF2 crystals. Sci. Rep. 5, 15580 (2015).
Dessovic, P. et al. 229Thorium-doped calcium fluoride for nuclear laser spectroscopy. J. Phys. Condens. Matter 26, 105402 (2014).
Dunlap, B. D. & Kalvius, G. M. in Handbook on the Physics and Chemistry of the Actinides Vol. 2 (eds Freeman, A. J. & Lander, G. H.) 331–434 (Elsevier Science, 1985).
Porsev, S. G., Safronova, M. S. & Kozlov, M. G. Precision calculation of hyperfine constants for extracting nuclear moments of 229Th. Phys. Rev. Lett. 127, 253001 (2021).
von der Wense, L. & Zhang, C. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock. Eur. Phys. J. D 74, 146 (2020).
Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).
Liao, W.-T., Das, S., Keitel, C. H. & Pálffy, A. Coherence-enhanced optical determination of the 229Th isomeric transition. Phys. Rev. Lett. 109, 262502 (2012).
Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Sinclair, L. C. et al. Invited article: a compact optically coherent fiber frequency comb. Rev. Sci. Instrum. 86, 081301 (2015).
Black, E. D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001).
Allison, T. K., Cingöz, A., Yost, D. C. & Ye, J. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).
Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express 19, 23483–23493 (2011).
Beeks, K. The nuclear excitation of thorium-229 in the CaF2 environment: development of a crystalline nuclear clock. PhD thesis, Technische Universität, Wien (2022).
Rix, S. et al. Formation of metallic colloids in CaF2 by intense ultraviolet light. Appl. Phys. Lett. 99, 261909–261909 (2011).
Seiferle, B., von der Wense, L., Laatiaoui, M. & Thirolf, P. G. A VUV detection system for the direct photonic identification of the first excited isomeric state of 229Th. Eur. Phys. J. D 70, 58 (2016).