• Silverberg, A. B., Shah, S. D., Haymond, M. W. & Cryer, P. E. Norepinephrine: hormone and neurotransmitter in man. Am. J. Physiol. 234, E252 (1978).

    CAS 
    PubMed 

    Google Scholar
     

  • Pacholczyk, T., Blakely, R. D. & Amara, S. G. Expression cloning of a cocaine-and antidepressant-sensitive human noradrenaline transporter. Nature 350, 350–354 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandela, P. & Ordway, G. A. The norepinephrine transporter and its regulation. J. Neurochem. 97, 310–333 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kristensen, A. S. et al. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev. 63, 585–640 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brust, A. et al. χ-Conopeptide pharmacophore development: toward a novel class of norepinephrine transporter inhibitor (Xen2174) for pain. J. Med. Chem. 52, 6991–7002 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Llorca-Torralba, M., Borges, G., Neto, F., Mico, J. A. & Berrocoso, E. Noradrenergic locus coeruleus pathways in pain modulation. Neuroscience 338, 93–113 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pertovaara, A. Noradrenergic pain modulation. Prog. Neurobiol. 80, 53–83 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berridge, C. W., Schmeichel, B. E. & España, R. A. Noradrenergic modulation of wakefulness/arousal. Sleep Med. Rev. 16, 187–197 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Jansen, A. S., Nguyen, X. V., Karpitskiy, V., Mettenleiter, T. C. & Loewy, A. D. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270, 644–646 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bobb, A. J. et al. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am. J. Med. Genet. B 134, 67–72 (2005).

    Article 

    Google Scholar
     

  • Lake, C. R. et al. High plasma norepinephrine levels in patients with major affective disorder. Am. J. Psychiatry 139, 1315–1318 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bohn, L. M., Xu, F., Gainetdinov, R. R. & Caron, M. G. Potentiated opioid analgesia in norepinephrine transporter knock-out mice. J. Neurosci. 20, 9040–9045 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Penmatsa, A., Wang, K. H. & Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 503, 85–90 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. H., Penmatsa, A. & Gouaux, E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521, 322–327 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pidathala, S., Mallela, A. K., Joseph, D. & Penmatsa, A. Structural basis of norepinephrine recognition and transport inhibition in neurotransmitter transporters. Nat. Commun. 12, 2199 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, J. A. & Gouaux, E. Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nat. Struct. Mol. Biol. 25, 170–175 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, J. A. et al. Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature 569, 141–145 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plenge, P. et al. The antidepressant drug vilazodone is an allosteric inhibitor of the serotonin transporter. Nat. Commun. 12, 5063 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paczkowski, F. A., Sharpe, I. A., Dutertre, S. & Lewis, R. J. χ-Conotoxin and tricyclic antidepressant interactions at the norepinephrine transporter define a new transporter model. J. Biol. Chem. 282, 17837–17844 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharpe, I. A. et al. Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter. Nat. Neurosci. 4, 902–907 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharpe, I. A. et al. Inhibition of the norepinephrine transporter by the venom peptide χ-MrIA: site of action, Na+ dependence, and structure–activity relationship. J. Biol. Chem. 278, 40317–40323 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. W., Turk, B. E. & Rudnick, G. Control of serotonin transporter phosphorylation by conformational state. Proc. Natl Acad. Sci. USA 113, E2776–E2783 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramamoorthy, S., Shippenberg, T. S. & Jayanthi, L. D. Regulation of monoamine transporters: role of transporter phosphorylation. Pharmacol. Ther. 129, 220–238 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hillhouse, T. M. & Porter, J. H. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp. Clin. Psychopharmacol. 23, 1–21 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahn, M. K., Robertson, D. & Blakely, R. D. A mutation in the human norepinephrine transporter gene (SLC6A2) associated with orthostatic intolerance disrupts surface expression of mutant and wild-type transporters. J. Neurosci. 23, 4470–4478 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurian, M. A. et al. Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J. Clin. Invest. 119, 1595–1603 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurian, M. A. et al. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. Lancet Neurol. 10, 54–62 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beerepoot, P., Lam, V. M. & Salahpour, A. Pharmacological chaperones of the dopamine transporter rescue dopamine transporter deficiency syndrome mutations in heterologous cells. J. Biol. Chem. 291, 22053–22062 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahsavar, A. et al. Structural insights into the inhibition of glycine reuptake. Nature 591, 677–681 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Motiwala, Z. et al. Structural basis of GABA reuptake inhibition. Nature 606, 820–826 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melikian, H. E., Ramamoorthy, S., Tate, C. G. & Blakely, R. D. Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition. Mol. Pharmacol. 50, 266–276 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Sogawa, C. et al. C-terminal region regulates the functional expression of human noradrenaline transporter splice variants. Biochem. J. 401, 185–195 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauman, P. A. & Blakely, R. D. Determinants within the C-terminus of the human norepinephrine transporter dictate transporter trafficking, stability, and activity. Arch. Biochem. Biophys. 404, 80–91 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, D. & Gouaux, E. Illumination of serotonin transporter mechanism and role of the allosteric site. Sci. Adv. 7, eabl3857 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, R. J., Alewood, P. F., Alewood, D. & Palant, E. Type II chi-conotoxin peptides (noradrenaline transporter inhibitors). US Patent US7507717B2 (2009).

  • Nilsson, K. P. R. et al. Solution structure of χ-conopeptide MrIA, a modulator of the human norepinephrine transporter. Pept. Sci. 80, 815–823 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sharpe, I. A. et al. Inhibition of the norepinephrine transporter by the venom peptide chi-MrIA. Site of action, Na+ dependence, and structure-activity relationship. J. Biol. Chem. 278, 40317–40323 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, H. H., Wall, S. & Rudnick, G. Ion coupling stoichiometry for the norepinephrine transporter in membrane vesicles from stably transfected cells. J. Biol. Chem. 271, 6911–6916 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramamoorthy, S. et al. Expression of a cocaine-sensitive norepinephrine transporter in the human placental syncytiotrophoblast. Biochemistry 32, 1346–1353 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koldsø, H. et al. Unbiased simulations reveal the inward-facing conformation of the human serotonin transporter and Na(+) ion release. PLoS Comput. Biol. 7, e1002246 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felts, B. et al. The two Na+ sites in the human serotonin transporter play distinct roles in the ion coupling and electrogenicity of transport. J. Biol. Chem. 289, 1825–1840 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ascher, J. A. et al. Bupropion: a review of its mechanism of antidepressant activity. J. Clin. Psychiatry 56, 395–401 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Shalabi, A. R., Walther, D., Baumann, M. H. & Glennon, R. A. Deconstructed analogues of bupropion reveal structural requirements for transporter inhibition versus substrate-induced neurotransmitter release. ACS Chem. Neurosci. 8, 1397–1403 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, A. W., Lebel, L. A., Howard, H. R. & Zorn, S. H. Ziprasidone: a novel antipsychotic agent with a unique human receptor binding profile. Eur. J. Pharmacol. 425, 197–201 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cross, A. J. et al. Quetiapine and its metabolite norquetiapine: translation from in vitro pharmacology to in vivo efficacy in rodent models. Br. J. Pharmacol. 173, 155–166 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, W. C. & Amara, S. G. Membrane cholesterol modulates the outward facing conformation of the dopamine transporter and alters cocaine binding. J. Biol. Chem. 285, 32616–32626 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeppelin, T., Ladefoged, L. K., Sinning, S., Periole, X. & Schiøtt, B. A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition. PLoS Comput. Biol. 14, e1005907 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, R. et al. Enhanced activity against multidrug-resistant bacteria through coapplication of an analogue of tachyplesin I and an inhibitor of the QseC/B signaling pathway. J. Med. Chem. 63, 3475–3484 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeLano, W. L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40, 82–92 (2002).


    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *