Tiedau, J. et al. Laser excitation of the Th-229 nucleus. Phys. Rev. Lett. 132, 182501 (2024).
Elwell, R. et al. Laser excitation of the 229Th nuclear isomeric transition in a solid-state host. Phys. Rev. Lett. 133, 013201 (2024).
Zhang, C. et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock. Nature 633, 63–70 (2024).
Hudson, E. R., Vutha, A. C., Lamoreaux, S. K. & DeMille, D. Investigation of the optical transition in the 229Th nucleus: solid-state optical frequency standard and fundamental constant variation (Poster). In Proc. XXI International Conference on Atomic Physics (eds Rozman, M. G. et al.) MO28 (2008).
Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010).
Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181–186 (2003).
Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).
Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).
Litvinova, E., Feldmeier, H., Dobaczewski, J. & Flambaum, V. Nuclear structure of lowest 229Th states and time-dependent fundamental constants. Phys. Rev. C 79, 064303 (2009).
Fuchs, E. et al. Implications of the laser excitation of the Th-229 nucleus for dark matter searches. Preprint at https://arxiv.org/abs/2407.15924 (2024).
Caputo, A. et al. On the sensitivity of nuclear clocks to new physics. Preprint at https://arxiv.org/abs/2407.17526 (2024).
Beeks, K. et al. Fine-structure constant sensitivity of the Th-229 nuclear clock transition. Preprint at https://arxiv.org/abs/2407.17300 (2024).
Jeet, J. et al. Results of a direct search using synchrotron radiation for the low-energy 229Th nuclear isomeric transition. Phys. Rev. Lett. 114, 253001 (2015).
Hiraki, T. et al. Controlling 229Th isomeric state population in a VUV transparent crystal. Nat. Commun. 15, 5536 (2024).
Tkalya, E. V., Varlamov, V. O., Lomonosov, V. V. & Nikulin, S. A. Processes of the nuclear isomer 229mTh(3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons. Phys. Scr. 53, 296–299 (1996).
Tkalya, E. V. Proposal for a nuclear gamma-ray laser of optical range. Phys. Rev. Lett. 106, 162501 (2011).
von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).
Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).
Peik, E. et al. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 6, 034002 (2021).
Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).
Hogle, S. et al. Reactor production of thorium-229. Appl. Radiat. Isot. 114, 19–27 (2016).
Forsberg, C. & Lewis, L. Uses For Uranium-233: What Should Be Kept For Future Needs? (Oak Ridge National Laboratory, 1999).
Jeet, J. Search for the Low Lying Transition in the 229Th Nucleus. PhD thesis, Univ. California (2018).
Beeks, K. et al. Growth and characterization of thorium-doped calcium fluoride single crystals. Sci. Rep. 13, 3897 (2023).
Rellergert, W. G. et al. Progress towards fabrication of 229Th-doped high energy band-gap crystals for use as a solid-state optical frequency reference. IOP Conf. Ser. Mater. Sci. Eng. 15, 012005 (2010).
Sletten, G. Preparation of targets of alpha-radioactive isotopes. Nucl. Instrum. Methods 102, 465–468 (1972).
Adair, H. L. Preparation and characterization of radioactive samples for various areas of research. Nucl. Instrum. Methods 167, 45–53 (1979).
Glover, K. M. et al. The preparation of stable and actinide nuclide targets for nuclear measurements. IEEE Trans. Nucl. Sci. 28, 1593–1596 (1981).
Maier, H. J. Preparation of nuclear accelerator targets by vacuum evaporation. IEEE Trans. Nucl. Sci. 28, 1575–1583 (1981).
Maier, H. J., Grossmann, R. & Friebel, H. U. Radioactive targets for nuclear accelerator experiments. Nucl. Instrum. Methods Phys. Res. B 56, 926–932 (1991).
Greene, J. P., Ahmad, I. & Thomas, G. E. Radioactive targets and source development at Argonne National Laboratory. Nucl. Instrum. Methods Phys. Res. A 334, 101–110 (1993).
Baumeister, P. W. Properties of Multilayer Filters (Institute of Optics, Univ. Rochester, 1973).
IAEA. Regulations for the Safe Transport of Radioactive Material. Report No. SSR-6 (Rev. 1) (IAEA, 2018).
Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Ellis, J. K., Wen, X.-D. & Martin, R. L. Investigation of thorium salts as candidate materials for direct observation of the 229mTh nuclear transition. Inorg. Chem. 53, 6769–6774 (2014).
Gouder, T. et al. Measurements of the band gap of ThF4 by electron spectroscopy techniques. Phys. Rev. Res. 1, 033005 (2019).
Osipenko, M. et al. Measurement of photo- and radio-luminescence of thin ThF4 films. Nucl. Instrum. Methods Phys. Res. A 1068, 169744 (2024).
Urbach, H. P. & Rikken, G. L. Spontaneous emission from a dielectric slab. Phys. Rev. A 57, 3913–3930 (1998).
Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).
Liao, W.-T., Das, S., Keitel, C. H. & Pálffy, A. Coherence-enhanced optical determination of the 229Th isomeric transition. Phys. Rev. Lett. 109, 262502 (2012).
Karpeshin, F. F. & Trzhaskovskaya, M. B. A proposed solution for the lifetime puzzle of the 229mTh+ isomer. Nucl. Phys. A 1010, 122173 (2021).
Kroemer, H. Problems in the theory of heterojunction discontinuities. CRC Crit. Rev. Solid State Sci. 5, 555–564 (1975).
Brillson, L. J. Surfaces and Interfaces of Electronic Materials (Wiley, 2012).
Beeks, K. et al. Optical transmission enhancement of ionic crystals via superionic fluoride transfer: growing VUV-transparent radioactive crystals. Phys. Rev. B 109, 094111 (2024).
Pastor, R. & Arita, K. Preparation and crystal growth of ThF4. Mater. Res. Bull. 9, 579–583 (1974).
Martel, L. et al. Insight into the crystalline structure of ThF4 with the combined use of neutron diffraction, 19F magic-angle spinning-NMR, and density functional theory calculations. Inorg. Chem. 57, 15350–15360 (2018).
Bemis, C. E. et al. Coulomb excitation of states in 229Th. Phys. Scr. 38, 657–663 (1988).
Gerstenkorn, S. et al. Structures hyperfines du spectre d’étincelle, moment magnétique et quadrupolaire de l’isotope 229 du thorium. J. Phys. 35, 483–495 (1974).
Campbell, C., Radnaev, A. & Kuzmich, A. Wigner crystals of 229Th for optical excitation of the nuclear isomer. Phys. Rev. Lett. 106, 223001 (2011).
Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).
Yamaguchi, A. et al. Laser spectroscopy of triply charged 229Th isomer for a nuclear clock. Nature 629, 62–66 (2024).
Jackson, R. A., Amaral, J. B., Valerio, M. E. G., Demille, D. P. & Hudson, E. R. Computer modelling of thorium doping in LiCaAlF6 and LiSrAlF6: application to the development of solid state optical frequency devices. J. Phys. Condens. Matter 21, 325403 (2009).
Pimon, M., Grüneis, A., Mohn, P. & Schumm, T. Ab-initio study of calcium fluoride doped with heavy isotopes. Crystals 12, 1128 (2022).
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).
Röhlsberger, R., Schlage, K., Sahoo, B., Couet, S. & Rüffer, R. Collective Lamb shift in single-photon superradiance. Science 328, 1248–1251 (2010).
Dornow, V. A., Binder, J., Heidemann, A., Kalvius, G. M. & Wortmann, G. Preparation of narrow-line sources for the 6.2 keV Mössbauer resonance of 181Ta. Nucl. Instrum. Methods 163, 491–497 (1979).
von der Wense, L. & Zhang, C. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock. Eur. Phys. J. D 74, 146 (2020).
Chastain, J. & King R. C. in Handbook of X-ray Photoelectron Spectroscopy Vol. 40 (ed. Chastain, J.) 221 (Perkin-Elmer, 1992).
Li, H. H. Refractive index of alkaline earth halides and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 8, 161–290 (1980).
French, R. H., Müllejans, H. & Jones, D. J. Optical properties of aluminum oxide: determined from vacuum ultraviolet and electron energy-loss spectroscopies. J. Am. Ceram. Soc. 81, 2549–2557 (1998).
Zemax OpticStudio. Zemax v.12.2 (ANSYS Inc., 2012).
Steele, J. A. et al. How to GIWAXS: grazing incidence wide angle X-ray scattering applied to metal halide perovskite thin films. Adv. Energy Mater. 13, 2300760 (2023).
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Petrilli, H. M., Blochl, P. E., Blaha, P. & Schwarz, K. Electric-field-gradient calculations using the projector augmented wave method. Phys. Rev. B 57, 14690–14697 (1998).
Krukau, A., Vydrov, O., Izmaylov, A. & Scuseria, G. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).
Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).
Nienhuis, G. & Alkemade, C. Th. J. Atomic radiative transition probabilities in a continuous medium. Physica B+C 81C, 181–188 (1976).
Tkalya, E. V. Spontaneous emission probability for M1 transition in a dielectric medium: 229mTh(3/2+, 3.5 ± 1.0 eV) decay. JETP Lett. 71, 311–313 (2000).
Lukosz, W. & Kunz, R. E. Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles. J. Opt. Soc. Am. 67, 1615–1619 (1978).
Boyd, M. M. High Precision Spectroscopy of Strontium in an Optical Lattice: Towards a New Standard for Frequency and Time. PhD thesis, Univ. Colorado (2007).
A federal jury in Delaware determined on Friday that Qualcomm didn’t breach its agreement with…
Geese The Wendy Award The Apprentice What have you read/watched/listened to lately? Phoebe Ward, 22,…
15% ROI, 5% down loans!","body":"3.99% rate, 5% down! Access the BEST deals in the US…
Particles in ship exhaust inadvertently cause cloud brightening – some geoengineering projects would try to…
The weather outside is frightful, but the iOS games are so delightful, let it play,…
A few flagship bond funds from some big-name Southern California-based firms saw outflows of more…