Categories: NATURE

Ultra-high-energy gamma-ray bubble around microquasar V4641 Sgr


  • Abeysekara, A. et al. Very-high-energy particle acceleration powered by the jets of the microquasar SS 433. Nature 562, 82–85 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Abdalla, H. et al. Acceleration and transport of relativistic electrons in the jets of the microquasar SS 433. Science 383, 402–406 (2024).


    Google Scholar
     

  • MacDonald, R. K. D. et al. The black hole binary V4641 Sagitarii: activity in quiescence and improved mass determinations. Astrophys. J. 784, 2 (2014).

    ADS 

    Google Scholar
     

  • Gaia, C. et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).


    Google Scholar
     

  • in ’t Zand, J. et al. SAX J1819.3-2525. International Astronomical Union Circular, No. 7119, #1 (1999).

  • Abdalla, H. et al. A search for very high-energy flares from the microquasars GRS 1915+105, Circinus X-1, and V4641 Sgr using contemporaneous H.E.S.S. and RXTE observations. Astron. Astrophys. 612, A10 (2018).


    Google Scholar
     

  • Escobar, G. J., Pellizza, L. & Romero, G. E. Cosmic-ray production from neutron escape in microquasar jets. Astron. Astrophys. 650, A136 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Fender, R., Maccarone, T. & Van Kesteren, Z. Energization of interstellar media and cosmic ray production by jets from X-ray binaries. Mon. Not. R. Astron. Soc. 360, 1085–1090 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Romero, G. E. & Vila, G. S. The proton low-mass microquasar: high-energy emission. Astron. Astrophys. 485, 623–631 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Abeysekara, A. et al. The High-Altitude Water Cherenkov (HAWC) observatory in México: the primary detector. Nucl. Instrum. Methods Phys. Res. A 1052, 168253 (2023).

    CAS 

    Google Scholar
     

  • Revnivtsev, M., Sunyaev, R., Gilfanov, M. & Churazov, E. V4641Sgr—a super-Eddington source enshrouded by an extended envelope. Astron. Astrophys. 385, 904–908 (2002).

    ADS 

    Google Scholar
     

  • Lindstrøm, C. et al. New clues on outburst mechanisms and improved spectroscopic elements of the black hole binary V4641 Sagittarii. Mon. Not. R. Astron. Soc. 363, 882–890 (2005).

    ADS 

    Google Scholar
     

  • Gallo, E., Plotkin, R. M. & Jonker, P. G. V4641 Sgr: a candidate precessing microblazar. Mon. Not. R. Astron. Soc. Lett. 438, L41–L45 (2013).

    ADS 

    Google Scholar
     

  • Aharonian, F. & Atoyan, A. Gamma rays from galactic sources with relativistic jets. New Astron. Rev. 42, 579–584 (1998).

    ADS 

    Google Scholar
     

  • Heinz, S. & Sunyaev, R. Cosmic rays from microquasars: a narrow component to the CR spectrum? Astron. Astrophys. 390, 751–766 (2002).

    ADS 

    Google Scholar
     

  • Aharonian, F. A. Very High Energy Cosmic Gamma Radiation. A Crucial Window on the Extreme Universe (World Scientific, 2004).

  • IceCube Collaboration. Observation of high-energy neutrinos from the galactic plane. Science 380, 1338–1343 (2023).

    ADS 

    Google Scholar
     

  • Margon, B. Observations of SS 433. Annu. Rev. Astron. Astrophys. 22, 507–536 (1984).

    ADS 
    CAS 

    Google Scholar
     

  • Corbel, S. et al. Large-scale, decelerating, relativistic X-ray jets from the microquasar XTE J1550-564. Science 298, 196–199 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Gallo, E. et al. A dark jet dominates the power output of the stellar black hole Cygnus X-1. Nature 436, 819–821 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Sell, P. H. et al. Parsec-scale bipolar X-ray shocks produced by powerful jets from the neutron star Circinus X-1. Astrophys. J. Lett. 719, L194–L198 (2010).

    ADS 

    Google Scholar
     

  • Pakull, M. W., Soria, R. & Motch, C. A 300-parsec-long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793. Nature 466, 209–212 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Fabrika, S. The jets and supercritical accretion disk in SS 433. Astrophys. Space Phys. Rev. 12, 1–152 (2004).

    ADS 

    Google Scholar
     

  • Pakull, M. W. & Mirioni, L. Bubble nebulae around ultraluminous X-ray sources. In Proc. Winds, Bubbles, and Explosions: A Conference to Honor John Dyson (eds Arthur, S. J. & Henney, W. J.) 197–199 (2003).

  • Berghea, C. T. et al. Detection of a radio bubble around the ultraluminous X-ray source Holmberg IX X-1. Astrophys. J. 896, 117 (2020).

    ADS 

    Google Scholar
     

  • Kaaret, P., Feng, H. & Roberts, T. P. Ultraluminous X-ray sources. Annu. Rev. Astron. Astrophys. 55, 303–341 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Mirabel, I. F. & Rodríguez, L. F. Sources of relativistic jets in the galaxy. Annu. Rev. Astron. Astrophys. 37, 409–443 (1999).

    ADS 

    Google Scholar
     

  • Salvesen, G. & Pokawanvit, S. Origin of spin–orbit misalignments: the microblazar V4641 Sgr. Mon. Not. R. Astron. Soc. 495, 2179–2204 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Heinz, S. & Sunyaev, R. A. Cosmic rays from microquasars: a narrow component to the CR spectrum? Astron. Astrophys. 390, 751–766 (2002).

    ADS 

    Google Scholar
     

  • Cooper, A. J., Gaggero, D., Markoff, S. & Zhang, S. High-energy cosmic ray production in X-ray binary jets. Mon. Not. R. Astron. Soc. 493, 3212–3222 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Albert, A. et al. Performance of the HAWC Observatory and TeV gamma-ray measurements of the Crab Nebula with improved extensive air shower reconstruction algorithms. Astrophys. J. 972, 144 (2024).

  • Abeysekara, A. et al. Measurement of the Crab Nebula spectrum past 100 TeV with HAWC. Astrophys. J. 881, 134 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Vianello, G. et al. The Multi-Mission Maximum Likelihood framework (3ML). Preprint at https://arxiv.org/abs/1507.08343 (2015).

  • Younk, P. W. et al. A high-level analysis framework for HAWC. In Proc. 34th International Cosmic Ray Conference (ICRC2015) 948 (2015).

  • Abeysekara, A. U. et al. Characterizing gamma-ray sources with HAL (HAWC accelerated likelihood) and 3ML. In Proc. 37th International Cosmic Ray Conference (ICRC2021) 828 (2022).

  • Atkins, R. et al. Observation of TeV gamma rays from the Crab Nebula with Milagro using a new background rejection technique. Astrophys. J. 595, 803–811 (2003).

    ADS 

    Google Scholar
     

  • Abeysekara, A. et al. Observation of the Crab Nebula with the HAWC gamma-ray observatory. Astrophys. J. 843, 39 (2017).

    ADS 

    Google Scholar
     

  • Ackermann, M. et al. Search for extended sources in the galactic plane using six years of Fermi-Large Area Telescope pass 8 data above 10 GeV. Astrophys. J. 843, 139 (2017).

    ADS 

    Google Scholar
     

  • Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    MathSciNet 

    Google Scholar
     

  • Liddle, A. R. Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. Lett. 377, L74–L78 (2007).

    ADS 

    Google Scholar
     

  • Bozdogan, H. Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).

    MathSciNet 

    Google Scholar
     

  • Abeysekara, A. et al. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science 358, 911–914 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Abeysekara, A. et al. HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon. Nat. Astron. 5, 465–471 (2021).

    ADS 

    Google Scholar
     

  • Albert, A. et al. 3HWC: the third HAWC catalog of very-high-energy gamma-ray sources. Astrophys. J. 905, 76 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Abdalla, H. et al. The H.E.S.S. Galactic plane survey. Astron. Astrophys. 612, A1 (2018).


    Google Scholar
     

  • Abdollahi, S. et al. Incremental Fermi Large Area Telescope fourth source catalog. Astrophys. J. Suppl. Ser. 260, 53 (2022).

    ADS 

    Google Scholar
     

  • Liu, Q. Z., van Paradijs, J. & van den Heuvel, E. P. J. Catalogue of high-mass X-ray binaries in the Galaxy. Astron. Astrophys. 455, 1165–1168 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Liu, Q. Z., van Paradijs, J. & van den Heuvel, E. P. J. A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (Fourth edition). Astron. Astrophys. 469, 807–810 (2007).

    ADS 

    Google Scholar
     

  • Ritter, H. & Kolb, U. Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (Seventh edition). Astron. Astrophys. 404, 301–303 (2003).

    ADS 

    Google Scholar
     

  • Tanaka, Y. & Lewin, W. H. G. in X-ray Binaries (eds Lewin, W. H. G., van Paradijs, J. & van den Heuvel, E. P. J.) 126 (Cambridge Univ. Press, 1995).

  • Krivonos, R. et al. INTEGRAL/IBIS nine-year Galactic hard X-ray survey. Astron. Astrophys. 545, A27 (2012).


    Google Scholar
     

  • Bird, A. et al. The IBIS soft gamma-ray sky after 1000 INTEGRAL orbits. Astrophys. J. Suppl. Ser. 223, 15 (2016).

    ADS 

    Google Scholar
     

  • Oh, K. et al. The 105-month Swift-BAT all-sky hard X-ray survey. Astrophys. J. Suppl. Ser. 235, 4 (2018).

    ADS 

    Google Scholar
     

  • Matsuoka, M. et al. The MAXI mission on the ISS: science and instruments for monitoring all-sky X-ray images. Publ. Astron. Soc. Jpn. 61, 999–1010 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Shaw, A. et al. High resolution X-ray spectroscopy of V4641 Sgr during its 2020 outburst. Mon. Not. R. Astron. Soc. 516, 124–137 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Revnivtsev, M., Gilfanov, M., Churazov, E. & Sunyaev, R. Super-Eddington outburst of V4641 Sgr. Astron. Astrophys. 391, 1013–1022 (2002).

    ADS 

    Google Scholar
     

  • Koljonen, K. I. I. & Tomsick, J. A. The obscured X-ray binaries V404 Cyg, Cyg X-3, V4641 Sgr, and GRS 1915+105. Astron. Astrophys. 639, A13 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Hjellming, R. et al. Light curves and radio structure of the 1999 September transient event in V4641 Sagittarii (=XTE J1819–254=SAX J1819.3–2525). Astrophys. J. 544, 977 (2000).

    ADS 

    Google Scholar
     

  • Orosz, J. A. et al. A black hole in the superluminal source SAX J1819.3–2525 (V4641 Sgr). Astrophys. J. 555, 489 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Chaty, S. et al. Optical and near-infrared observations of the microquasar V4641 Sgr during the 1999 September outburst. Mon. Not. R. Astron. Soc. 343, 169–174 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Dame, T. M., Hartmann, D. & Thaddeus, P. The Milky Way in molecular clouds: a new complete CO survey. Astrophys. J. 547, 792–813 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Dame, T. M. & Thaddeus, P. A CO survey of the entire northern sky. Astrophys. J. Suppl. Ser. 262, 5 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Kalberla, P. M. et al. The Leiden/Argentine/Bonn (LAB) survey of galactic HI-final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Maitra, D. & Bailyn, C. D. X-ray observations of V4641 SGR (SAX J1819.3–2525) during the brief and violent outburst of 2003. Astrophys. J. 637, 992 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Pahari, M., Misra, R., Dewangan, G. C. & Pawar, P. Constraining distance and inclination angle of V4641 Sgr using SWIFT and NuSTAR observations during low soft spectral state. Astrophys. J. 814, 158 (2015).

    ADS 

    Google Scholar
     

  • Clemens, D. P. Massachusetts–Stony Brook galactic plane CO survey: the Galactic disk rotation curve. Astrophys. J. 295, 422–428 (1985).

    ADS 
    CAS 

    Google Scholar
     

  • Gabici, S., Aharonian, F. A. & Casanova, S. Broad-band non-thermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants. Mon. Not. R. Astron. Soc. 396, 1629–1639 (2009).

    ADS 
    CAS 

    Google Scholar
     



  • Source link

    fromermedia@gmail.com

    Share
    Published by
    fromermedia@gmail.com

    Recent Posts

    How Digital Marketing is Revolutionizing the Healthcare Industry

    In today’s fast-paced digital era, healthcare organizations are no exception to the power of digital…

    4 hours ago

    Author Correction: Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy

    Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University…

    6 hours ago

    Star-eating black hole could power cosmic particle accelerator

    Download the Nature Podcast 16 October 2024In this episode:00:46 An unusual γ-ray producing microquasarA type…

    6 hours ago

    Global conservation priorities for island plant diversity

    Schrader, J. et al. Nature https://doi.org/10.1038/s41586-024-08036-1 (2024).Article  Google Scholar  Losos, J. B. & Ricklefs, R.…

    6 hours ago

    High CO2 dampens then amplifies N-induced diversity loss over 24 years

    Stevens, C. J., Dise, N. B., Mountford, J. O. & Gowing, D. J. Impact of…

    6 hours ago

    Most of Earth’s meteorites come from three young asteroid families

    Nature, Published online: 16 October 2024; doi:10.1038/d41586-024-03051-8Researchers have narrowed down the sources of the most…

    7 hours ago